448 research outputs found
Effect of recombinant human nerve growth factor eye drops in patients with dry eye: a phase IIa, open label, multiple-dose study
Background: Dry eye disease (DED) affects more than 14% of the elderly population causing decrease of quality of life, high costs and vision impairment. Current treatments for DED aim at lubricating and controlling inflammation of the ocular surface. Development of novel therapies targeting different pathogenic mechanisms is sought-after. The aim of this study is to evaluate safety and efficacy of recombinant human nerve growth factor (rhNGF) eye drops in patients with DED. Methods: Forty consecutive patients with moderate to severe DED were included in a phase IIa, prospective, open label, multiple-dose, clinical trial to receive rhNGF eye drops at 20 μg/mL (Group 1: G1) or at 4 μg/mL (Group 2: G2) concentrations, two times a day in both eyes for 28 days (NCT02101281). The primary outcomes measures were treatment-emerged adverse events (AE), Symptoms Assessment in Dry Eye (SANDE) scale, ocular surface staining and Schirmer test. Results: Of 40 included patients, 39 completed the trial. Both tested rhNGF eye drop concentrations were safe and well tolerated. Twenty-nine patients experienced at least one AE (14 in G1 and 15 in G2), of which 11 had at least 1 related AE (8 in G1 and 3 in G2). Both frequency and severity of DED symptoms and ocular surface damage showed significant improvement in both groups, while tear function improved only in G1. Conclusions: The data of this study indicate that rhNGF eye drops in both doses is safe and effective in improving symptoms and signs of DED. Randomised clinical trials are ongoing to confirm the therapeutic benefit of rhNGF in DED. Trial registration number: NCT02101281
Clustering of galaxies around GRB sight-lines
There is evidence of an overdensity of strong intervening MgII absorption
line systems distributed along the lines of sight towards GRB afterglows
relative to quasar sight-lines. If this excess is real, one should also expect
an overdensity of field galaxies around GRB sight-lines, as strong MgII tends
to trace these sources. In this work, we test this expectation by calculating
the two point angular correlation function of galaxies within
120 ( at ) of GRB afterglows. We compare the Gamma-ray burst Optical and
Near-infrared Detector (GROND) GRB afterglow sample -- one of the largest and
most homogeneous samples of GRB fields -- with galaxies and AGN found in the
COSMOS-30 photometric catalog. We find no significant signal of anomalous
clustering of galaxies at an estimated median redshift of around GRB
sight-lines, down to . This result is contrary to the
expectations from the MgII excess derived from GRB afterglow spectroscopy,
although many confirmed galaxy counterparts to MgII absorbers may be too faint
to detect in our sample -- especially those at . We note that the addition
of higher sensitivity Spitzer IRAC or HST WFC3 data for even a subset of our
sample would increase this survey's depth by several orders of magnitude,
simultaneously increasing statistics and enabling the investigation of a much
larger redshift space.}Comment: 10 pages, 6 figures. A&A accepte
Another short-burst host galaxy with an optically obscured high star formation rate: The case of GRB 071227
We report on radio continuum observations of the host galaxy of the short
gamma-ray burst 071227 (z=0.381) with the Australia Telescope Compact Array
(ATCA). We detect the galaxy in the 5.5 GHz band with an integrated flux
density of Fnu = 43 +/- 11 microJy, corresponding to an unobscured
star-formation rate (SFR) of about 24 Msun/yr, forty times higher than what was
found from optical emission lines. Among the ~30 well-identified and studied
host galaxies of short bursts this is the third case where the host is found to
undergo an episode of intense star formation. This suggests that a fraction of
all short-burst progenitors hosted in star-forming galaxies could be physically
related to recent star formation activity, implying a relatively short merger
time scale.Comment: 6 pages, ApJ, accepted for publicatio
International Space Station Columbus Payload SoLACES Degradation Assessment
SOLAR is a European Space Agency (ESA) payload deployed on the International Space Station (ISS) and located on the Columbus Laboratory. It is located on the Columbus External Payload Facility in a zenith location. The objective of the SOLAR payload is to study the Sun. The SOLAR payload consists of three instruments that allow for measurement of virtually the entire electromagnetic spectrum (17 nm to 2900 nm). The three payload instruments are SOVIM (SOlar Variable and Irradiance Monitor), SOLSPEC (SOLar SPECctral Irradiance measurements), and SolACES (SOLar AutoCalibrating Extreme UV/UV Spectrophotometers)
Afterglow rebrightenings as a signature of a long-lasting central engine activity? The emblematic case of GRB 100814A
In the past few years the number of well-sampled optical to NIR light curves
of long Gamma-Ray Bursts (GRBs) has greatly increased particularly due to
simultaneous multi-band imagers such as GROND. Combining these densely sampled
ground-based data sets with the Swift UVOT and XRT space observations unveils a
much more complex afterglow evolution than what was predicted by the most
commonly invoked theoretical models. GRB 100814A represents a remarkable
example of these interesting well-sampled events, showing a prominent late-time
rebrightening in the optical to NIR bands and a complex spectral evolution.
This represents a unique laboratory to test the different afterglow emission
models. Here we study the nature of the complex afterglow emission of GRB
100814A in the framework of different theoretical models. Moreover, we compare
the late-time chromatic rebrightening with those observed in other well-sampled
long GRBs. We analysed the optical and NIR observations obtained with the
seven-channel Gamma-Ray burst Optical and Near-infrared Detector at the 2.2 m
MPG/ESO telescope together with the X-ray and UV data detected by the
instruments onboard the Swift observatory. The broad-band afterglow evolution,
achieved by constructing multi-instrument light curves and spectral energy
distributions, will be discussed in the framework of different theoretical
models. We find that the standard models that describe the broad-band afterglow
emission within the external shock scenario fail to describe the complex
evolution of GRB 100814A, and therefore more complex scenarios must be invoked.
[abridged]Comment: 11 pages, 7 figures, 2 tables; Astronomy & Astrophysics, in pres
Indium joints for cryogenic gravitational wave detectors
A viable technique for the preparation of highly thermal conductive joints between sapphire components in gravitational wave detectors is presented. The mechanical loss of such a joint was determined to be as low as 2 × 10−3 at 20 K and 2 × 10−2 at 300 K. The thermal noise performance of a typical joint is compared to the requirements of the Japanese gravitational wave detector, KAGRA. It is shown that using such an indium joint in the suspension system allows it to operate with low thermal noise. Additionally, results on the maximum amount of heat which can be extracted via indium joints are presented. It is found that sapphire parts, joined by means of indium, are able to remove the residual heat load in the mirrors of KAGRA
Gamma-Ray Bursts Trace UV Metrics of Star Formation over 3 < z < 5
We present the first uniform treatment of long duration gamma-ray burst (GRB)
host galaxy detections and upper limits over the redshift range 3<z<5, a key
epoch for observational and theoretical efforts to understand the processes,
environments, and consequences of early cosmic star formation. We contribute
deep imaging observations of 13 GRB positions yielding the discovery of eight
new host galaxies. We use this dataset in tandem with previously published
observations of 31 further GRB positions to estimate or constrain the host
galaxy rest-frame ultraviolet (UV; 1600 A) absolute magnitudes M_UV. We then
use the combined set of 44 M_UV estimates and limits to construct the M_UV
luminosity function (LF) for GRB host galaxies over 3<z<5 and compare it to
expectations from Lyman break galaxy (LBG) photometric surveys with the Hubble
Space Telescope. Adopting standard prescriptions for the luminosity dependence
of galaxy dust obscuration (and hence, total star formation rate), we find that
our LF is compatible with LBG observations over a factor of 600x in host
luminosity, from M_UV = -22.5 mag to >-15.6 mag, and with extrapolations of the
assumed Schechter-type LF well beyond this range. We review proposed
astrophysical and observational biases for our sample, and find they are for
the most part minimal. We therefore conclude, as the simplest interpretation of
our results, that GRBs successfully trace UV metrics of cosmic star formation
over the range 3<z<5. Our findings suggest GRBs are providing an accurate
picture of star formation processes from z ~3 out to the highest redshifts.Comment: publ. ApJ 809 (2015) 76; 14 figures; replacement to reflect changes
to v1 (rounding effects, diff. LF from Bouwens
Multiwavelength analysis of three SNe associated with GRBs observed by GROND
After the discovery of the first connection between GRBs and SNe almost two
decades ago, tens of SN-like rebrightenings have been discovered and about
seven solid associations have been spectroscopically confirmed to date. Using
GROND optical/NIR data and Swift X-ray/UV data, we estimate the intrinsic
extinction, luminosity, and evolution of three SN rebrightenings in GRB
afterglow light curves at z~0.5. The SNe 2008hw, 2009nz, and 2010ma exhibit
0.80, 1.15, and 1.78 times the optical (r band) luminosity of SN 1998bw,
respectively. While SN 2009nz evolves similarly to SN 1998bw, SNe 2008hw and
2010ma show earlier peak times. The quasi-bolometric light curves were
corrected for the contribution of the NIR bands using data available in the
literature and blackbody fits. The large luminosity of SN 2010ma (1.4x10^43
erg/s) is confirmed, while SNe 2008hw and 2009nz reached a peak luminosity
closer to SN 1998bw. Physical parameters of the SN explosions, such as
synthesised nickel mass, ejecta mass, and kinetic energy, are estimated using
Arnett's analytic approach, which resulted in nickel masses of around 0.4-0.5
Msun. By means of the a very comprehensive data set, we found that the
luminosity and the nickel mass of SNe 2008hw, 2009nz, and 2010ma resembles
those of other known GRB-associated SNe. This findings strengthens previous
claims of GRB-SNe being brighter than type-Ic SNe unaccompanied by GRBs.Comment: 11 pages, 9 figures, accepted for publication in Astronomy &
Astrophysics, abstract abridge
Super-solar metallicity at the position of the ultra-long GRB130925A
Over the last decade there has been immense progress in the follow-up of
short and long GRBs, resulting in a significant rise in the detection rate of
X-ray and optical afterglows, in the determination of GRB redshifts, and of the
identification of the underlying host galaxies. Nevertheless, our theoretical
understanding on the progenitors and central engines powering these vast
explosions is lagging behind, and a newly identified class of `ultra-long' GRBs
has fuelled speculation on the existence of a new channel of GRB formation. In
this paper we present high signal-to-noise X-shooter observations of the host
galaxy of GRB130925A, which is the fourth unambiguously identified ultra-long
GRB, with prompt gamma-ray emission detected for ~20ks. The GRB line of sight
was close to the host galaxy nucleus, and our spectroscopic observations cover
both this region along the bulge/disk of the galaxy, in addition to a bright
star-forming region within the outskirts of the galaxy. From our broad
wavelength coverage we obtain accurate metallicity and dust-extinction
measurements at both the galaxy nucleus, and an outer star-forming region, and
measure a super-solar metallicity at both locations, placing this galaxy within
the 10-20% most metal-rich GRB host galaxies. Such a high metal enrichment has
implications on the progenitor models of both long and ultra-long GRBs,
although the edge-on orientation of the host galaxy does not allow us to rule
out a large metallicity variation along our line of sight. The spatially
resolved spectroscopic data presented in this paper offer important insight
into variations in the metal and dust abundance within GRB host galaxies. They
also illustrate the need for IFU observations on a larger sample of GRB host
galaxies at varies metallicities to provide a more quantitative view on the
relation between the GRB circumburst and the galaxy-whole properties.Comment: 9 pages, 3 figures, A&A in press, matches published versio
- …