534 research outputs found
Flooding tolerance of spelt (Triticum spelta L.) compared to wheat (Triticum aestivum L.) - A physiological and genetic approach
In marginal, agroclimatic zones, yield is often affected by flooding, but the effect is much less for winter spelt (Triticum spelta L.) than for winter wheat (Triticum aestivum L.). This study evaluates the reaction of a wheat x spelt population (F5 RILs of Forno x Oberkulmer) to flooding stress in the early phase of germination. Lines with greater tolerance to 48 h flooding just after imbibition showed less electrolyte leakage (r = -0.79) indicating greater membrane integrity and better survival. Five QTL explaining 40.6% of the phenotypic variance for survival to flooding were found, and localized on the chromosomes 2B, 3B,5A, and 7S. The tolerance to 48 h flooding four days after sowing was best correlated with the mean germination time (r = 0.8), indicating that the plants with a fast coleoptile growth during flooding are less susceptible to flooding. Ten QTL were found for seedling growth index after flooding explaining 35.5% of the phenotypic variance. They were localized on chromosomes 2A, 2B, 2D, 3A, 4B, 5A, 5B, 6A, and 7S. Standard varieties of spelt and wheat showed the same tolerance characteristics. The possibility to use marker assisted selection for flooding tolerance is discusse
The improvement in regenerated doubled haploids from anther culture of wheat by anther transfer
This study was conducted to determine the most suitable method of regeneration by comparing two approaches: transfer of anthers (with and without embryo-like structures) to regeneration conditions after a period of two to four weeks on induction medium (= anther-transfer treatment) and transfer of embryo-like structures to regeneration conditions after five to eight weeks on induction medium. The early transfer of anthers brought about a significant reduction in the number of embryos formed, but nevertheless significantly improved the frequency of plant regeneration. Combining an optimal date of anther transfer with the early addition of colchicine to the induction medium (100 mg lâ1 for 1 and 3 days) led to an increase in the number of doubled haploid regenerants. The results indicate that transferring the anthers after 28 days and adding 100 mg lâ1 colchicine to the induction medium on one day only caused a significant improvement in the ability of green plants to regenerate (7.0 compared to 0.50) as well as in chromosome doubling (success index: 4.0 compared to 0.33
2D electron cyclotron emission imaging at ASDEX Upgrade (invited)
The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides
measurements of the 2D electron temperature dynamics with high spatial and temporal resolution.
An overview of the technical and experimental properties of the system is presented. These
properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfvén eigenmode, showing both the advantage of having a two-dimensional 2D measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented. © 2010 American Institute of Physics
Critical points in edge tunneling between generic FQH states
A general description of weak and strong tunneling fixed points is developed
in the chiral-Luttinger-liquid model of quantum Hall edge states. Tunneling
fixed points are a subset of `termination' fixed points, which describe
boundary conditions on a multicomponent edge. The requirement of unitary time
evolution at the boundary gives a nontrivial consistency condition for possible
low-energy boundary conditions. The effect of interactions and random hopping
on fixed points is studied through a perturbative RG approach which generalizes
the Giamarchi-Schulz RG for disordered Luttinger liquids to broken left-right
symmetry and multiple modes. The allowed termination points of a multicomponent
edge are classified by a B-matrix with rational matrix elements. We apply our
approach to a number of examples, such as tunneling between a quantum Hall edge
and a superconductor and tunneling between two quantum Hall edges in the
presence of interactions. Interactions are shown to induce a continuous
renormalization of effective tunneling charge for the integrable case of
tunneling between two Laughlin states. The correlation functions of
electronlike operators across a junction are found from the B matrix using a
simple image-charge description, along with the induced lattice of boundary
operators. Many of the results obtained are also relevant to ordinary Luttinger
liquids.Comment: 23 pages, 6 figures. Xiao-Gang Wen: http://dao.mit.edu/~we
Search for Solar Axions Produced in the Reaction
A search for the axioelectric absorption of 5.5-MeV solar axions produced in
the reaction was performed with
two BGO detectors placed inside a low-background setup. A model independent
limit on axion-photon and axion-nucleon couplings was obtained: . Constraints on the axion-electron
coupling constant were obtained for axions with masses in the MeV
range: . The solar positron flux from
decay was determined for axions with masses . Using the existing experimental data on the interplanetary positron
flux, a new constraint on the axion-electron coupling constant for axions with
masses in the MeV range was obtained: .Comment: 6 pages, 5 figure
Universal SSE algorithm for Heisenberg model and Bose Hubbard model with interaction
We propose universal SSE method for simulation of Heisenberg model with
arbitrary spin and Bose Hubbard model with interaction. We report on the first
calculations of soft-core bosons with interaction by the SSE method. Moreover
we develop a simple procedure for increase efficiency of the algorithm. From
calculation of integrated autocorrelation times we conclude that the method is
efficient for both models and essentially eliminates the critical slowing down
problem.Comment: 6 pages, 5 figure
Solitary magnetic perturbations at the ELM onset
Edge localised modes (ELMs) allow maintaining sufficient purity of tokamak
H-mode plasmas and thus enable stationary H-mode. On the other hand in a future
device ELMs may cause divertor power flux densities far in excess of tolerable
material limits. The size of the energy loss per ELM is determined by
saturation effects in the non-linear phase of the ELM, which at present is
hardly understood. Solitary magnetic perturbations (SMPs) are identified as
dominant features in the radial magnetic fluctuations below 100kHz. They are
typically observed close (+-0.1ms) to the onset of pedestal erosion. SMPs are
field aligned structures rotating in the electron diamagnetic drift direction
with perpendicular velocities of about 10km/s. A comparison of perpendicular
velocities suggests that the perturbation evoking SMPs is located at or inside
the separatrix. Analysis of very pronounced examples showed that the number of
peaks per toroidal turn is 1 or 2, which is clearly lower than corresponding
numbers in linear stability calculations. In combination with strong peaking of
the magnetic signals this results in a solitary appearance resembling modes
like palm tree modes, edge snakes or outer modes. This behavior has been
quantified as solitariness and correlated to main plasma parameters. SMPs may
be considered as a signature of the non-linear ELM-phase originating at the
separatrix or further inside. Thus they provide a handle to investigate the
transition from linear to non-linear ELM phase. By comparison with data from
gas puff imaging processes in the non-linear phase at or inside the separatrix
and in the scrape-off-layer (SOL) can be correlated. A connection between the
passing of an SMP and the onset of radial filament propagation has been found.
Eventually the findings related to SMPs may contribute to a future quantitative
understanding of the non-linear ELM evolution.Comment: submitted to Nuclear Fusio
An asymptotical von-Neumann measurement strategy for solid-state qubits
A measurement on a macroscopic quantum system does in general not lead to a
projection of the wavefunction in the basis of the detector as predicted by
von-Neumann's postulate. Hence, it is a question of fundametal interest, how
the preferred basis onto which the state is projected is selected out of the
macroscopic Hilbert space of the system. Detector-dominated von-Neumann
measurements are also desirable for both quantum computation and verification
of quantum mechanics on a macroscopic scale. The connection of these questions
to the predictions of the spin-boson modelis outlined. I propose a measurement
strategy, which uses the entanglement of the qubit with a weakly damped
harmonic oscillator. It is shown, that the degree of entanglement controls the
degree of renormalization of the qubit and identify, that this is equivalent to
the degree to which the measurement is detector-dominated. This measurement
very rapidly decoheres the initial state, but the thermalization is slow. The
implementation in Josephson quantum bits is described and it is shown that this
strategy also has practical advantages for the experimental implementation.Comment: 4 pages, 3 figures, accepted for publication as a rapid communication
in Phys. Rev.
- âŠ