3 research outputs found

    Protease-activated receptor 1 activation enhances doxorubicin-induced cardiotoxicity

    Get PDF
    Objective: The anti-cancer anthracycline drug Doxorubicin (Dox) causes cardiotoxicity. We investigated the role of protease-activated receptor 1 (PAR-1) in Dox-induced cardiotoxicity. Methods and results: In vitro experiments revealed that PAR-1 enhanced Dox-induced mitochondrial dysfunction, reactive oxygen species and cell death of cardiac myocytes and cardiac fibroblasts. The contribution of PAR-1 to Dox-induced cardiotoxicity was investigated by subjecting PAR-1−/− mice and PAR-1+/+ mice to acute and chronic exposure to Dox. Heart function was measured by echocardiography. PAR-1−/− mice exhibited significant less cardiac injury and dysfunction compared to PAR-1+/+ mice after acute and chronic Dox administration. PAR-1−/− mice had reduced levels of nitrotyrosine, apoptosis and inflammation in their heart compared to PAR-1+/+ mice. Furthermore, inhibition of PAR-1 in wild-type mice with vorapaxar significantly reduced the acute Dox-induced cardiotoxicity. Conclusion: Our results indicate that activation of PAR-1 contributes to Dox-induced cardiotoxicity. Inhibition of PAR-1 may be a new approach to reduce Dox-induced cardiotoxicity in cancer patients

    Protease-activated receptor 4 protects mice from Coxsackievirus B3 and H1N1 influenza A virus infection

    Get PDF
    PAR4 is expressed by a variety of cells, including platelets, cardiac, lung and immune cells. We investigated the contribution of PAR4 to viral infections of the heart and lung. Toll-like receptor (TLR) 3-dependent immune responses were analyzed after co-stimulation of PAR4 in murine bone-marrow derived macrophages, embryonic fibroblasts and embryonic cardiomyocytes. In addition, we analyzed Coxsackievirus B3 (CVB3) or H1N1 influenza A virus (H1N1 IAV) infection of PAR4−/− (ΔPAR4) and wild-type (WT) mice. Lastly, we investigated the effect of platelet inhibition on H1N1 IAV infection. In vitro experiments revealed that PAR4 stimulation enhances the expression of TLR3-dependent CXCL10 expression and decreases TLR3-dependent NFκB-mediated proinflammatory gene expression. Furthermore, CVB3-infected ΔPAR4 mice exhibited a decreased anti-viral response and increased viral genomes in the heart leading to more pronounced CVB3 myocarditis compared to WT mice. Similarly, H1N1 IAV-infected ΔPAR4 mice had increased immune cell numbers and inflammatory mediators in the lung, and increased mortality compared with infected WT controls. The study showed that PAR4 protects mice from viral infections of the heart and lung

    Differential roles of factors IX and XI in murine placenta and hemostasis under conditions of low tissue factor

    Get PDF
    The intrinsic tenase complex (FIXa-FVIIIa) of the intrinsic coagulation pathway and, to a lesser extent, thrombin-mediated activation of FXI, are necessary to amplify tissue factor (TF)-FVIIa-initiated thrombin generation. In this study, we determined the contribution of murine FIX and FXI to TF-dependent thrombin generation in vitro. We further investigated TF-dependent FIX activation in mice and the contribution of this pathway to hemostasis. Thrombin generation was decreased in FIX- but not in FXI-deficient mouse plasma. Furthermore, injection of TF increased levels of FIXa-antithrombin complexes in both wildtype and FXI-/- mice. Genetic studies were used to determine the effect of complete deficiencies of either FIX or FXI on the survival of mice expressing low levels of TF. Low-TF; FIX2/y male mice were born at the expected frequency, but none survived to wean. In contrast, low-TF;FXI-/- mice were generated at the expected frequency at wean and had a 6-month survival equivalent to that of low-TF mice. Surprisingly, a deficiency of FXI, but not FIX, exacerbated the size of blood pools in low-TF placentas and led to acute hemorrhage and death of some pregnant dams. Our data indicate that FIX, but not FXI, is essential for survival of low-TF mice after birth. This finding suggests that TF-FVIIa-mediated activation of FIX plays a critical role in murine hemostasis. In contrast, FXI deficiency, but not FIX deficiency, exacerbated blood pooling in low-TF placentas, indicating a tissue-specific requirement for FXI in the murine placenta under conditions of low TF
    corecore