660 research outputs found
Electrostatic attraction of nanoobjects - a versatile strategy towards mesostructured transition metal compounds
This highlight summarizes current challenges of mesostructuring and focuses on the scope and the potential of the ELAN â (electrostatic attraction of nanoobjects) strategy in mesostructuring of transition metal compounds. It discusses the limitations of this concept and highlights prominent examples. ELAN exploits the Coulomb attraction between inorganic precursors and polymeric templates in order to prevent macrophase separation. Essential requirements for ELAN are tailor-made, mesoscopic polyelectrolytic templates and charged molecular oligo-ions or stable colloids carrying a surface charge. The ELAN-strategy is highly reliable and opens the way to crystalline, mesoporous transition metal compounds with predefined polymorphism. It also provides the possibility to adjust wall chemistry and reactivity as well as the flexibility to synthesise different mesostructures (spheres, non-woven arrays or hexagonally ordered phases)
Recommended from our members
Transmitters and receivers in SiGe BiCMOS technology for sensitive gas spectroscopy at 222 - 270 GHz
This paper presents transmitter and receiver components for a gas spectroscopy system. The components are fabricated in IHP's 0.13 Όm SiGe BiCMOS technology. Two fractional-N phase-locked loops are used to generate dedicated frequency ramps for the transmitter and receiver and frequency shift keying for the transmitter. The signal-to-noise ratio (SNR) for the absorption line of gaseous methanol (CH 3 OH) at 247.6 GHz is used as measure for the performance of the system. The implemented mixer-first receiver allows a high performance of the system due to its linearity up to an input power of -10 dBm. Using a transmitter-array with an output power of 7 dBm an SNR of 4660 (integration time of 2 ms for each data point) was obtained for the 247.6 GHz absorption line of CH 3 OH at 5 Pa. We have extended our single frequency-band system for 228 - 252 GHz to a 2-band system to cover the range 222 - 270 GHz by combining corresponding two transmitters and receivers with the frequency bands 222 - 256 GHz and 250 - 270 GHz on single transmitter- and receiver-chips. This 2-band operation allows a parallel spectra acquisition and therefore a high flexibility of data acquisition for the two frequency-bands. The 50 GHz bandwidth allows for highly specific and selective gas sensing. © 2019 Author(s)
Field theoretic approach to the counting problem of Hamiltonian cycles of graphs
A Hamiltonian cycle of a graph is a closed path that visits each site once
and only once. I study a field theoretic representation for the number of
Hamiltonian cycles for arbitrary graphs. By integrating out quadratic
fluctuations around the saddle point, one obtains an estimate for the number
which reflects characteristics of graphs well. The accuracy of the estimate is
verified by applying it to 2d square lattices with various boundary conditions.
This is the first example of extracting meaningful information from the
quadratic approximation to the field theory representation.Comment: 5 pages, 3 figures, uses epsf.sty. Estimates for the site entropy and
the gamma exponent indicated explicitl
Mesostructured ZnO/Au nanoparticle composites with enhanced photocatalytic activity
Ease of catalyst separation from reaction mixtures represents a significant advantage in heterogeneous photocatalytic wastewater treatment. However, the activity of the catalyst strongly depends on its surface-to-volume ratio. Here, we present an approach based on cylindrical polybutadiene-block-poly(2-vinylpyridine) polymer brushes as template, which can be simultaneously loaded with zinc oxide (ZnO) and gold (Au) nanoparticles. Pyrolytic template removal of the polymer yields in mesostructured ZnO/Au composites, showing higher efficiencies in the photocatalytic degradation of ciprofloxacin and levofloxacin (generic antibiotics present in clinical wastewater) as compared to neat mesostructured ZnO. Upscaling of the presented catalyst is straightforward promising high technical relevance
Loop Model with Generalized Fugacity in Three Dimensions
A statistical model of loops on the three-dimensional lattice is proposed and
is investigated. It is O(n)-type but has loop fugacity that depends on global
three-dimensional shapes of loops in a particular fashion. It is shown that,
despite this non-locality and the dimensionality, a layer-to-layer transfer
matrix can be constructed as a product of local vertex weights for infinitely
many points in the parameter space. Using this transfer matrix, the site
entropy is estimated numerically in the fully packed limit.Comment: 16pages, 4 eps figures, (v2) typos and Table 3 corrected. Refs added,
(v3) an error in an explanation of fig.2 corrected. Refs added. (v4) Changes
in the presentatio
The structure ofAl(111)-Kâ(â3 Ă â3)R30° determined by LEED: stable and metastable adsorption sites
It is found that the adsorption of potassium on Al(111) at 90 K and at 300 K both result in a (â3 Ă â3)R0° structure. Through a detailed LEED analysis it is revealed that at 300 K the adatoms occupy substitutional sites and at 90 K the adatoms occupy on-top sites; both geometries have hitherto been considered as very unusual. The relationship between bond length and coordination is discussed with respect to the present results, and with respect to other quantitative studies of alkali-metal/metal adsorption systems
Exact Results for Hamiltonian Walks from the Solution of the Fully Packed Loop Model on the Honeycomb Lattice
We derive the nested Bethe Ansatz solution of the fully packed O() loop
model on the honeycomb lattice. From this solution we derive the bulk free
energy per site along with the central charge and geometric scaling dimensions
describing the critical behaviour. In the limit we obtain the exact
compact exponents and for Hamiltonian walks, along with
the exact value for the connective constant
(entropy). Although having sets of scaling dimensions in common, our results
indicate that Hamiltonian walks on the honeycomb and Manhattan lattices lie in
different universality classes.Comment: 12 pages, RevTeX, 3 figures supplied on request, ANU preprint
MRR-050-9
- âŠ