6 research outputs found

    An Uncoupling of the Processes of Oxidation and Phosphorylation in Glycolysis

    No full text

    Interaction of glyceraldehyde-3-phosphate dehydrogenase with SH-containing compounds: evidence for the binding of l-cysteine and for the dependence of the binding on the functional state of the enzyme

    Get PDF
    AbstractIncorporation of l-[35S]cysteine into rabbit muscle glyceraldehyde-3-phosphate dehydrogenase was detected following incubation of the enzyme in a mixture containing glyceraldehyde-3-phosphate, NAD+ and the labeled cysteine. Insignificant binding occurred in the absence of either the substrate or NAD+, suggesting that formation of an acylated enzyme form was a prerequisite for the binding. Stoichiometry of the binding depended on the number of functioning active centers; up to 4 moles of l[35S]cysteine bound per mole tetramer with fresh enzyme preparations. The l-[35S]cysteine incorporation depended on pH and was maximal when a group having pKa of 8.5 is protonated. To clarify the relevance of this finding to the effect of SH-containing compounds previously shown to decrease the rate of 3-phosphoglyceroyl-enzyme hydrolysis [Kuzminskaya et al., FEBS Lett. 336 (1993) 208–210], the pH-dependence of the effect of glutathione on the hydrolysis rate was determined and found to be close to the pH-dependence of l-[35S]cysteine binding

    Influence of oxidative stress on catalytic and Non-glycolytic Functions of Glyceraldehyde-3-phosphate Dehydrogenase

    No full text
    BACKGROUND: Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) is a unique enzyme that, besides its main function in glycolysis (catalysis of glyceraldehyde-3-phosphate oxidation), possesses a number of non-glycolytic activities. The present review summarizes information on the role of oxidative stress in the regulation of the enzymatic activity as well as non-glycolytic functions of GAPDH. METHODS: Based on the analysis of literature data and the results obtained in our research group, mechanisms of the regulation of GAPDH functions through the oxidation of the sulfhydryl groups in the active site of the enzyme have been suggested. RESULTS: Mechanism of GAPDH oxidation includes consecutive oxidation of the catalytic Cysteine (Cys150) into sulfenic, sulfinic, and sulfonic acid derivatives, resulting in the complete inactivation of the enzyme. The cysteine sulfenic acid reacts with reduced glutathione (GSH) to form a mixed disulfide (S-glutathionylated GAPDH) that further reacts with Cys154 yielding the disulfide bond in the active site of the enzyme. In contrast to the sulfinic and sulfonic acids, the mixed disulfide and the intramolecular disulfide bond are reversible oxidation products that can be reduced in the presence of GSH or thioredoxin. CONCLUSION: Oxidation of sulfhydryl groups in the active site of GAPDH is unavoidable due to the enhanced reactivity of Cys150. The irreversible oxidation of Cys150 is prevented by Sglutathionylation and disulfide bonding with Cys154. The oxidation/reduction of the sulfhydryl groups in the active site of GAPDH can be used for regulation of glycolysis and numerous side activities of this enzyme including the induction of apoptosis

    Regulation by Different Types of Chaperones of Amyloid Transformation of Proteins Involved in the Development of Neurodegenerative Diseases

    No full text
    The review highlights various aspects of the influence of chaperones on amyloid proteins associated with the development of neurodegenerative diseases and includes studies conducted in our laboratory. Different sections of the article are devoted to the role of chaperones in the pathological transformation of alpha-synuclein and the prion protein. Information about the interaction of the chaperonins GroE and TRiC as well as polymer-based artificial chaperones with amyloidogenic proteins is summarized. Particular attention is paid to the effect of blocking chaperones by misfolded and amyloidogenic proteins. It was noted that the accumulation of functionally inactive chaperones blocked by misfolded proteins might cause the formation of amyloid aggregates and prevent the disassembly of fibrillar structures. Moreover, the blocking of chaperones by various forms of amyloid proteins might lead to pathological changes in the vital activity of cells due to the impaired folding of newly synthesized proteins and their subsequent processing. The final section of the article discusses both the little data on the role of gut microbiota in the propagation of synucleinopathies and prion diseases and the possible involvement of the bacterial chaperone GroE in these processes

    Decrease of dehydrogenase activity of cerebral glyceraldehyde-3-phosphate dehydrogenase in different animal models of Alzheimer's disease

    No full text
    Recently, a relationship between glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the beta-amyloid precursor protein (betaAPP) in relationship with the pathogenesis of Alzheimer's disease (AD) has been suggested. Therefore, we studied the specific activity of GAPDH in the different animal models of AD: transgenic mice (Tg2576) and rats treated with beta-amyloid, or thiorphan, or lipopolysaccharides (LPS) and interferon gamma (INFgamma). We observed that GAPDH activity was significantly decreased in the brain samples from TG mice. The injection of beta-amyloid, or thiorphan, an inhibitor of neprilysin involved in beta-amyloid catabolism, in rat brains resulted in a pronounced reduction of the enzyme activity. The infusion of LPS and IFNgamma, which can influence the progression of the AD, significantly reduced the enzyme activity
    corecore