46 research outputs found

    Disassociated molecular orientation distributions of a composite cellulose–lignin carbon fiber precursor: A study by rotor synchronized NMR spectroscopy and X-ray scattering

    Get PDF
    Cellulose–lignin composite carbon fibers have shown to be a potential environmentally benign alternative to the traditional polyacrylonitrile precursor. With the associated cost reduction, cellulose–lignin carbon fibers are an attractive light-weight material for, e.g. wind power and automobile manufacturing. The carbon fiber tenacity, tensile modulus and creep resistance is in part determined by the carbon content and the molecular orientation distribution of the precursor. This work disassociates the molecular orientation of different components in cellulose–lignin composite fibers using rotor-synchronized solid-state nuclear magnetic resonance spectroscopy and X-ray scattering. Our results show that lignin is completely disordered, in a mechanically stretched cellulose–lignin composite fiber, while the cellulose is ordered. In contrast, the native spruce wood raw material displays both oriented lignin and cellulose. The current processes for fabricating a cellulose–lignin composite fiber cannot regain the oriented lignin as observed from the native wood

    Interstellar OH+, H2O+ and H3O+ along the sight-line to G10.6-0.4

    Full text link
    We report the detection of absorption lines by the reactive ions OH+, H2O+ and H3O+ along the line of sight to the submillimeter continuum source G10.6-0.4 (W31C). We used the Herschel HIFI instrument in dual beam switch mode to observe the ground state rotational transitions of OH+ at 971 GHz, H2O+ at 1115 and 607 GHz, and H3O+ at 984 GHz. The resultant spectra show deep absorption over a broad velocity range that originates in the interstellar matter along the line of sight to G10.6-0.4 as well as in the molecular gas directly associated with that source. The OH+ spectrum reaches saturation over most velocities corresponding to the foreground gas, while the opacity of the H2O+ lines remains lower than 1 in the same velocity range, and the H3O+ line shows only weak absorption. For LSR velocities between 7 and 50 kms1^{-1} we estimate total column densities of NN(OH+) >2.5×1014> 2.5 \times 10^{14} cm2^{-2}, NN(H2O+) 6×1013\sim 6 \times 10^{13} cm2^{-2} and NN(H3O+) 4.0×1013\sim 4.0 \times 10^{13} cm2^{-2}. These detections confirm the role of O+^+ and OH+^+ in initiating the oxygen chemistry in diffuse molecular gas and strengthen our understanding of the gas phase production of water. The high ratio of the OH+ by the H2O+ column density implies that these species predominantly trace low-density gas with a small fraction of hydrogen in molecular form

    Polysaccharides for sustainable energy storage – A review

    No full text
    Funding Information: This work was partially funded by the Academy of Finland's Flagship Programme under Projects No. 318890 and 318891 (Competence Center for Materials Bioeconomy, FinnCERES). Publisher Copyright: © 2021 The Author(s) Copyright: Copyright 2021 Elsevier B.V., All rights reserved.The increasing amount of electric vehicles on our streets as well as the need to store surplus energy from renewable sources such as wind, solar and tidal parks, has brought small and large scale batteries into the focus of academic and industrial research. While there has been huge progress in performance and cost reduction in the past years, batteries and their components still face several environmental issues including safety, toxicity, recycling and sustainability. In this review, we address these challenges by showcasing the potential of polysaccharide-based compounds and materials used in batteries. This particularly involves their use as electrode binders, separators and gel/solid polymer electrolytes. The review contains a historical section on the different battery technologies, considerations about safety on batteries and requirements of polysaccharide components to be used in different types of battery technologies. The last sections cover opportunities for polysaccharides as well as obstacles that prevent their wider use in battery industry.Peer reviewe

    Saisonarbeiter – auf Dauer. Zum Leben italienischer Arbeiter in Reutlingen vor dem Ersten Weltkrieg

    No full text
    Die Reutlinger Geschichtsblätter NF 55 (2016) enthalten Beiträge zur Geschichte und Kulturgeschichte der Stadt Reutlingen und der Region vom Mittelalter bis in die ersten Jahre des 20. Jahrhunderts

    Interactions and Dissociation Constants of Galactomannan Rendered Cellulose Films with Concavalin A by SPR Spectroscopy

    No full text
    Interactions of biomolecules at interfaces are important for a variety of physiological processes. Among these, interactions of lectins with monosaccharides have been investigated extensively in the past, while polysaccharide-lectin interactions have scarcely been investigated. Here, we explore the adsorption of galactomannans (GM) extracted from Prosopis affinis on cellulose thin films determined by a combination of multi-parameter surface plasmon resonance spectroscopy (MP-SPR) and atomic force microscopy (AFM). The galactomannan adsorbs spontaneously on the cellulose surfaces forming monolayer type coverage (0.60 ± 0.20 mg·m−2). The interaction of a lectin, Concavalin A (ConA), with these GM rendered cellulose surfaces using MP-SPR has been investigated and the dissociation constant KD (2.1 ± 0.8 × 10−8 M) was determined in a range from 3.4 to 27.3 nM. The experiments revealed that the galactose side chains as well as the mannose reducing end of the GM are weakly interacting with the active sites of the lectins, whereas these interactions are potentially amplified by hydrophobic effects between the non-ionic GM and the lectins, thereby leading to an irreversible adsorption

    Is small fiber neuropathy induced by gadolinium-based contrast agents?

    Full text link
    OBJECTIVES: In recent years, complaints of patients about burning pain in arms and legs after the injection of gadolinium-based contrast agents (GBCAs) have been reported. In the current study, we investigated changes of small fibers in the epidermis as a potential cause of the patient complaints in a mouse model. METHODS: Six groups of 8 mice were intravenously injected with either a macrocyclic GBCA (gadoteridol, gadoterate meglumine, gadobutrol), a linear GBCA (gadodiamide or gadobenate dimeglumine) (1 mmol/kg body weight), or saline (NaCl 0.9%). Four weeks after injection, animals were euthanized, and footpads were assessed using immunofluorescence staining. Intraepidermal nerve fiber density (IENFD) was calculated, and the median number of terminal axonal swellings (TASs) per IENFD was determined. RESULTS: Nonparametric Wilcoxon signed-rank test revealed significantly lower IENFDs for all GBCAs compared with the control group (P < 0.0001) with the linear GBCAs showing significantly lower IENFDs than the macrocyclic GBCAs (P < 0.0001). The linear GBCAs presented significantly more TAS per IENFD than the control group (P < 0.0001), whereas no significant increase of TAS per IENFD compared with the control group was found for macrocyclic GBCAs (P < 0.237). INTERPRETATION: It is unclear whether or at what dosage the decrease of IENFDs and the increase of TAS per IENFD found in the current animal model will appear in humans and if it translates into clinical symptoms. However, given the highly significant findings of the current study, more research in this field is required
    corecore