9 research outputs found

    EXPERIMENTAL IDENTIFICATION OF AN ELASTO-MECHANICAL MULTI-DEGREE-OF-FREEDOM-SYSTEM USING STOCHASTIC SIGNALS

    Get PDF
    The determination of dynamic parameters are the central points of the system identification of civil engineering structures under dynamic loading. This paper first gives a brief summary of the recent developments of the system identification methods in civil engineering and describes mathematical models, which enable the identification of the necessary parameters using only stochastic input signals. Relevant methods for this identification use Frequency Domain Decomposition (FDD), Autoregressive Moving Average Models (ARMA) and the Autoregressive Models with eXogenous input (ARX). In a first step an elasto-mechanical mdof-system is numerically modeled using FEM and afterwards tested numerically by above mentioned identification methods using stochastic signals. During the second campaign, dynamic measurements are conducted experimentally on a real 7-story RC-building with ambient signal input using sensors. The results are successfully for the relevant system identification methods

    EXPERIMENTAL IDENTIFICATION OF AN ELASTO-MECHANICAL MULTI-DEGREE-OF-FREEDOM-SYSTEM USING STOCHASTIC SIGNALS

    Get PDF
    The determination of dynamic parameters are the central points of the system identification of civil engineering structures under dynamic loading. This paper first gives a brief summary of the recent developments of the system identification methods in civil engineering and describes mathematical models, which enable the identification of the necessary parameters using only stochastic input signals. Relevant methods for this identification use Frequency Domain Decomposition (FDD), Autoregressive Moving Average Models (ARMA) and the Autoregressive Models with eXogenous input (ARX). In a first step an elasto-mechanical mdof-system is numerically modeled using FEM and afterwards tested numerically by above mentioned identification methods using stochastic signals. During the second campaign, dynamic measurements are conducted experimentally on a real 7-story RC-building with ambient signal input using sensors. The results are successfully for the relevant system identification methods

    Quellen und Literatur

    No full text
    corecore