68 research outputs found
Recommended from our members
Lake surface temperature [in “State of the Climate in 2017”]
Observed lake surface water temperature anomalies
in 2017 are placed in the context of the recent
warming observed in global surface air temperature
by collating long-term in situ lake
surface temperature observations from some of the
world’s best-studied lakes and a satellite-derived
global lake surface water temperature dataset. The
period 1996–2015, 20 years for which satellite-derived
lake temperatures are available, is used as the base
period for all lake temperature anomaly calculations
Modeling lakes and reservoirs in the climate system
Modeling studies examining the effect of lakes on regional and global climate, as well as studies on the influence of climate variability and change on aquatic ecosystems, are surveyed. Fully coupled atmosphere–land surface–lake climate models that could be used for both of these types of study simultaneously do not presently exist, though there are many applications that would benefit from such models. It is argued here that current understanding of physical and biogeochemical processes in freshwater systems is sufficient to begin to construct such models, and a path forward is proposed. The largest impediment to fully representing lakes in the climate system lies in the handling of lakes that are too small to be explicitly resolved by the climate model, and that make up the majority of the lake-covered area at the resolutions currently used by global and regional climate models. Ongoing development within the hydrological sciences community and continual improvements in model resolution should help ameliorate this issue
Climate change-induced increases in precipitation are reducing the potential for solar ultraviolet radiation to inactivate pathogens in surface waters
Climate change is accelerating the release of dissolved organic matter (DOM) to inland and coastal waters through increases in precipitation, thawing of permafrost, and changes in vegetation. Our modeling approach suggests that the selective absorption of ultraviolet radiation (UV) by DOM decreases the valuable ecosystem service wherein sunlight inactivates waterborne pathogens. Here we highlight the sensitivity of waterborne pathogens of humans and wildlife to solar UV, and use the DNA action spectrum to model how differences in water transparency and incident sunlight alter the ability of UV to inactivate waterborne pathogens. A case study demonstrates how heavy precipitation events can reduce the solar inactivation potential in Lake Michigan, which provides drinking water to over 10 million people. These data suggest that widespread increases in DOM and consequent browning of surface waters reduce the potential for solar UV inactivation of pathogens, and increase exposure to infectious diseases in humans and wildlife.Tis work was supported in part by NSF DEB-1360066 to C.E.W. and S.G.S. We thank M. Molina, S. Corsi, and
C. Fitzgerald for their assistance with analyzing the Manitowoc, WI sampl
The state of the Martian climate
60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
Rapid and highly variable warming of lake surface waters around the globe
In this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade−1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors—from seasonally ice-covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade−1) to ice-free lakes experiencing increases in air temperature and solar radiation (0.53°C decade−1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes.Peer reviewe
Optimization of Enzymatic Biochemical Logic for Noise Reduction and Scalability: How Many Biocomputing Gates Can Be Interconnected in a Circuit?
We report an experimental evaluation of the "input-output surface" for a
biochemical AND gate. The obtained data are modeled within the rate-equation
approach, with the aim to map out the gate function and cast it in the language
of logic variables appropriate for analysis of Boolean logic for scalability.
In order to minimize "analog" noise, we consider a theoretical approach for
determining an optimal set for the process parameters to minimize "analog"
noise amplification for gate concatenation. We establish that under optimized
conditions, presently studied biochemical gates can be concatenated for up to
order 10 processing steps. Beyond that, new paradigms for avoiding noise
build-up will have to be developed. We offer a general discussion of the ideas
and possible future challenges for both experimental and theoretical research
for advancing scalable biochemical computing
Lake surface water temperature [in “State of the Climate in 2019”]
Regional Climates is one chapter from the State of the Climate in 2019 annual report. Compiled
by NOAA’s National Centers for Environmental Information, State of the Climate in 2019 is
based on contributions from scientists from around the world. It provides a detailed update on
global climate indicators, notable weather events, and other data collected by environmental
monitoring stations and instruments located on land, water, ice, and in space.Universidad de Costa Rica/[805-B9-454]/UCR/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones Geofísicas (CIGEFI
A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009
Peer reviewe
- …