42 research outputs found
Assessment of Bacterial Antibiotic Resistance Transfer in the Gut
We assessed horizontal gene transfer between bacteria in the gastrointestinal (GI) tract. During the last decades, the emergence of antibiotic resistant strains and treatment failures of bacterial infections have increased the public awareness of antibiotic usage. The use of broad spectrum antibiotics creates a selective pressure on the bacterial flora, thus increasing the emergence of multiresistant bacteria, which results in a vicious circle of treatments and emergence of new antibiotic resistant bacteria. The human gastrointestinal tract is a massive reservoir of bacteria with a potential for both receiving and transferring antibiotic resistance genes. The increased use of fermented food products and probiotics, as food supplements and health promoting products containing massive amounts of bacteria acting as either donors and/or recipients of antibiotic resistance genes in the human GI tract, also contributes to the emergence of antibiotic resistant strains. This paper deals with the assessment of antibiotic resistance gene transfer occurring in the gut
The murine lung microbiome in relation to the intestinal and vaginal bacterial communities
BACKGROUND: This work provides the first description of the bacterial population of the lung microbiota in mice. The aim of this study was to examine the lung microbiome in mice, the most used animal model for inflammatory lung diseases such as COPD, cystic fibrosis and asthma. Bacterial communities from broncho-alveolar lavage fluids and lung tissue were compared to samples taken from fecal matter (caecum) and vaginal lavage fluid from female BALB/cJ mice. RESULTS: Using a customized 16S rRNA sequencing protocol amplifying the V3-V4 region our study shows that the mice have a lung microbiome that cluster separately from mouse intestinal microbiome (caecum). The mouse lung microbiome is dominated by Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Cyanobacteria overlapping the vaginal microbiome. We also show that removal of host tissue or cells from lung fluid during the DNA extraction step has an impact on the resulting bacterial community profile. Sample preparation needs to be considered when choosing an extraction method and interpreting data. CONCLUSIONS: We have consistently amplified bacterial DNA from mouse lungs that is distinct from the intestinal microbiome in these mice. The gut microbiome has been extensively studied for its links to development of disease. Here we suggest that also the lung microbiome could be important in relation to inflammatory lung diseases. Further research is needed to understand the contribution of the lung microbiome and the gut-lung axis to the development of lung diseases such as COPD and asthma
Laboratory Diagnostics of <i>Rickettsia</i> Infections in Denmark 2008–2015
Rickettsiosis is a vector-borne disease caused by bacterial species in the genus Rickettsia. Ticks in Scandinavia are reported to be infected with Rickettsia, yet only a few Scandinavian human cases are described, and rickettsiosis is poorly understood. The aim of this study was to determine the prevalence of rickettsiosis in Denmark based on laboratory findings. We found that in the Danish individuals who tested positive for Rickettsia by serology, the majority (86%; 484/561) of the infections belonged to the spotted fever group. In contrast, we could confirm 13 of 41 (32%) PCR-positive individuals by sequencing and identified all of these as R. africae, indicating infections after travel exposure. These 13 samples were collected from wound/skin material. In Denmark, approximately 85 individuals test positive for Rickettsia spp. annually, giving an estimated 26% (561/2147) annual prevalence among those suspected of rickettsiosis after tick bites. However, without clinical data and a history of travel exposure, a true estimation of rickettsiosis acquired endemically by tick bites cannot be made. Therefore, we recommend that both clinical data and specific travel exposure be included in a surveillance system of Rickettsia infections
Whole genome sequencing data used for surveillance of Campylobacter infections:detection of a large continuous outbreak, Denmark, 2019
BACKGROUND: Campylobacter is one of the most frequent causes of bacterial gastroenteritis. Campylobacter outbreaks are rarely reported, which could be a reflection of a surveillance without routine molecular typing. We have previously shown that numerous small outbreak-like clusters can be detected when whole genome sequencing (WGS) data of clinical Campylobacter isolates was applied. AIM: Typing-based surveillance of Campylobacter infections was initiated in 2019 to enable detection of large clusters of clinical isolates and to match them to concurrent retail chicken isolates in order to react on ongoing outbreaks. METHODS: We performed WGS continuously on isolates from cases (n = 701) and chicken meat (n = 164) throughout 2019. Core genome multilocus sequence typing was used to detect clusters of clinical isolates and match them to isolates from chicken meat. RESULTS: Seventy-two clusters were detected, 58 small clusters (2–4 cases) and 14 large clusters (5–91 cases). One third of the clinical isolates matched isolates from chicken meat. One large cluster persisted throughout the whole year and represented 12% of all studied Campylobacter cases. This cluster type was detected in several chicken samples and was traced back to one slaughterhouse, where interventions were implemented to control the outbreak. CONCLUSION: Our WGS-based surveillance has contributed to an improved understanding of the dynamics of the occurrence of Campylobacter strains in chicken meat and the correlation to clusters of human cases
Large Multicountry Outbreak of Invasive Listeriosis by a Listeria monocytogenes ST394 Clone Linked to Smoked Rainbow Trout, 2020 to 2021
Whole-genome sequencing (WGS) has revolutionized surveillance of infectious diseases. Disease outbreaks can now be detected with high precision, and correct attribution of infection sources has been improved. Listeriosis, caused by the bacterium Listeria monocytogenes, is a foodborne disease with a high case fatality rate and a large proportion of outbreak-related cases. Timely recognition of listeriosis outbreaks and precise allocation of food sources are important to prevent further infections and to promote public health. We report the WGS-based identification of a large multinational listeriosis outbreak with 55 cases that affected Germany, Austria, Denmark, and Switzerland during 2020 and 2021. Clinical isolates formed a highly clonal cluster (called Ny9) based on core genome multilocus sequence typing (cgMLST). Routine and ad hoc investigations of food samples identified L. monocytogenes isolates from smoked rainbow trout filets from a Danish producer grouping with the Ny9 cluster. Patient interviews confirmed consumption of rainbow trout as the most likely infection source. The Ny9 cluster was caused by a MLST sequence type (ST) ST394 clone belonging to molecular serogroup IIa, forming a distinct clade within molecular serogroup IIa strains. Analysis of the Ny9 genome revealed clpY, dgcB, and recQ inactivating mutations, but phenotypic characterization of several virulence-associated traits of a representative Ny9 isolate showed that the outbreak strain had the same pathogenic potential as other serogroup IIa strains. Our report demonstrates that international food trade can cause multicountry outbreaks that necessitate cross-border outbreak collaboration. It also corroborates the relevance of ready-to-eat smoked fish products as causes for listeriosis. IMPORTANCE Listeriosis is a severe infectious disease in humans and characterized by an exceptionally high case fatality rate. The disease is transmitted through consumption of food contaminated by the bacterium Listeria monocytogenes. Outbreaks of listeriosis often occur but can be recognized and stopped through implementation of whole-genome sequencing-based pathogen surveillance systems. We here describe the detection and management of a large listeriosis outbreak in Germany and three neighboring countries. This outbreak was caused by rainbow trout filet, which was contaminated by a L. monocytogenes clone belonging to sequence type ST394. This work further expands our knowledge on the genetic diversity and transmission routes of an important foodborne pathogen
Deep phenotyping of the unselected COPSAC2010 birth cohort study
BACKGROUND: We hypothesize that perinatal exposures, in particular the human microbiome and maternal nutrition during pregnancy, interact with the genetic predisposition to cause an abnormal immune modulation in early life towards a trajectory to chronic inflammatory diseases such as asthma and others. OBJECTIVE: The aim of this study is to explore these interactions by conducting a longitudinal study in an unselected cohort of pregnant women and their offspring with emphasis on deep clinical phenotyping, exposure assessment, and biobanking. Exposure assessments focus on the human microbiome. Nutritional intervention during pregnancy in randomized controlled trials are included in the study to prevent disease and to be able to establish causal relationships. METHODS: Pregnant women from eastern Denmark were invited during 2008–2010 to a novel unselected ‘COPSAC(2010)’ cohort. The women visited the clinic during pregnancy weeks 24 and 36. Their children were followed at the clinic with deep phenotyping and collection of biological samples at nine regular visits until the age of 3 and at acute symptoms. Randomized controlled trials of high‐dose vitamin D and fish oil supplements were conducted during pregnancy, and a trial of azithromycin for acute lung symptoms was conducted in the children with recurrent wheeze. RESULTS: Seven hundred and thirty‐eight mothers were recruited from week 24 of gestation, and 700 of their children were included in the birth cohort. The cohort has an over‐representation of atopic parents. The participant satisfaction was high and the adherence equally high with 685 children (98%) attending the 1 year clinic visit and 667 children (95%) attending the 2 year clinic visit. CONCLUSIONS: The COPSAC(2010) birth cohort study provides longitudinal clinical follow‐up with highly specific end‐points, exposure assessments, and biobanking. The cohort has a high adherence rate promising strong data to elucidate the interaction between genomics and the exposome in perinatal life leading to lifestyle‐related chronic inflammatory disorders such as asthma