374 research outputs found

    A Predictive Operation Controller for an Electro-Thermal Microgrid Utilizing Variable Flow Temperatures

    Full text link
    We propose an optimal operation control strategy for an electro-thermal microgrid. Compared to existing work, our approach increases flexibility by operating the thermal network with variable flow temperatures and in that way explicitly exploits its inherent storage capacities. To this end, the microgrid is represented by a multi-layer network composed of an electrical and a thermal layer. We show that the system behavior can be represented by a discrete-time state model derived from DC power flow approximations and 1d incompressible Euler equations. Both layers are interconnected via heat pumps. By combining this model with desired operating objectives and constraints, we obtain a constrained convex optimization problem. This is used to derive a model predictive control scheme for the optimal operation of electro-thermal microgrids. The performance of the proposed operation control algorithm is demonstrated in a numerical case study

    Garnet-controlled very low velocities in the lower mantle transition zone at sites of mantle upwelling

    Get PDF
    Deep mantle plumes and associated increased geotherms are expected to cause an upward deflection of the lower–upper mantle boundary and an overall thinning of the mantle transition zone between about 410 and 660 kilometres depth. We use subsequent forward modelling of mineral assemblages, seismic velocities and receiver functions to explain the common paucity of such observations in receiver function data. In the lower mantle transition zone, large horizontal differences in seismic velocities may result from temperature‐dependent assemblage variations. At this depth, primitive mantle compositions are dominated by majoritic garnet at high temperatures. Associated seismic velocities are expected to be much lower than for ringwoodite‐rich assemblages at undisturbed thermal conditions. Neglecting this ultra‐low‐velocity zone at upwelling sites can cause a miscalculation of the lower–upper mantle boundary on the order of 20 kilometres

    Influencing factors of the digital transformation on the supply chain complexity dimensions

    Get PDF
    Digital Disruption - 'the world in which we live in is changing'! Next-day delivery, Click & Collect, personalization, short delivery times and full order transparency have been incorporated in our daily life. In order to stay competitive, companies must react to the shifting customer demand towards on-demand, fitfor- purpose services and other market requirements. Due to these challenges and the increasing globalization, companies are confronted with ever more complex supply chain networks. The way to deal with the strongly increasing complexity of the company itself and its environment has become a key competitive factor. The complexity within a production company is characterized by the challenges encountered in daily business processes and can be described by the four dimensions of complexity: variety, heterogeneity, dynamics and non- transparency, as well as their interrelationships. Therefore, Supply Chain Management (SCM) is evolving from simply managing a chain of suppliers and manufactures towards a complex network including complicated backflows. New approaches in the context of digital transformation promise to support the management of such complex supply networks. Within this paper, influencing factors of the digital transformation and their effect on the four complexity dimensions are presented

    Localized crustal deformation along the central North Anatolian Fault Zone revealed by joint inversion of P-receiver functions and P-wave polarizations

    Get PDF
    The North Anatolian Fault Zone (NAFZ) is a major plate boundary that separates the Eurasian Plate to the north from the Anatolian Plate to the south and is associated with powerful damaging earthquakes. Despite numerous studies of the crust and upper mantle across the NAFZ, our understanding of the exact mechanisms and distribution of deformation with depth is still limited. Accurate models of the crustal velocity structure are key to assess seismic hazard associated with strike-slip deformation. Here, we address this need by employing a novel method that jointly inverts receiver function waveforms and P-wave polarizations to recover S-wave velocity structure from the surface to the upper mantle. The method is applied to a dense teleseismic data set collected across a segment of the central NAFZ in Turkey. The results provide important new constraints on the sedimentary thickness, depth to basement and Moho discontinuity beneath the region. Our estimates of uppermost sedimentary thickness range from 0 km in some areas (e.g. in the Central Pontides) to 6 km in the Çankırı Basin. Smaller basins are scattered along the NAFZ. A similar pattern is observed for the basement depth, with values exceeding 10 km beneath the Çankırı Basin, where the Moho is shallowest with a depth of ∼32 km. The Moho reaches a maximum depth of ∼42 km beneath the Central Pontides. Most other areas have an average Moho depth of 35–38 km. The results reveal clear structural–tectonic relationships in the crust: areas of fundamentally different sedimentary and crustal architecture are bounded by faults and suture zones. The NAFZ appears to accommodate small-scale basin and basement-highs, and acts as a thick-skinned (i.e. full crustal-scale) boundary between laterally displaced crustal blocks to the north and south. Seismicity clusters are centred on areas of low Vp/Vs ratios that may be representative of weak zones.publishedVersio

    Contrastive Representation Learning for Whole Brain Cytoarchitectonic Mapping in Histological Human Brain Sections

    Full text link
    Cytoarchitectonic maps provide microstructural reference parcellations of the brain, describing its organization in terms of the spatial arrangement of neuronal cell bodies as measured from histological tissue sections. Recent work provided the first automatic segmentations of cytoarchitectonic areas in the visual system using Convolutional Neural Networks. We aim to extend this approach to become applicable to a wider range of brain areas, envisioning a solution for mapping the complete human brain. Inspired by recent success in image classification, we propose a contrastive learning objective for encoding microscopic image patches into robust microstructural features, which are efficient for cytoarchitectonic area classification. We show that a model pre-trained using this learning task outperforms a model trained from scratch, as well as a model pre-trained on a recently proposed auxiliary task. We perform cluster analysis in the feature space to show that the learned representations form anatomically meaningful groups.Comment: Accepted to ISBI 202

    The crustal structure in the Northwest Atlantic region from receiver function inversion – Implications for basin dynamics and magmatism

    Get PDF
    The Labrador Sea and Baffin Bay form an extinct Palaeogene oceanic spreading system, divided by a major continental transform, the Davis Strait, with the whole region defined as the Northwest Atlantic. The Davis Strait hosts the Ungava Fault Zone and is the central structural element of the Davis Strait Large Igneous Province (DSIP) that formed broadly coeval with continental breakup to its north and south. While constraints on the crustal structure in this region primarily exist in the offshore, crustal models are limited onshore, which makes an interpretation of regional structures as well as the extent, and therefore origin of the DSIP extremely difficult to ascertain. Here, we have collected all available teleseismic data from the Northwest Atlantic margins and applied a receiver function inversion to retrieve station-wise velocity models of the crust and uppermost mantle. We integrate the outcomes with published controlled-source seismic data and regional crustal models to make inferences about the crustal structure and evolution of the Northwest Atlantic. In particular, we focused on constraining the spatial extent and origin of high velocity lower crust (HVLC), and determining whether it is generically related to the Davis Strait Igneous Province, syn-rift exhumed and serpentinised mantle, or pre-existing lower crustal bodies such as metamorphosed lower crust or older serpentinised mantle rocks. The new results allow us to better spatially constrain the DSIP and show the possible spatial extent of igneous-type HVLC across Southwest Greenland, Northwest Greenland and Southeast Baffin Bay. Similarly, we are able to relate some HVLC bodies to possible fossil collision/subduction zones/terrane boundaries, and in some instances to exhumed and serpentinised mantle.publishedVersio

    Denoising Diffusion Probabilistic Models for Image Inpainting of Cell Distributions in the Human Brain

    Full text link
    Recent advances in imaging and high-performance computing have made it possible to image the entire human brain at the cellular level. This is the basis to study the multi-scale architecture of the brain regarding its subdivision into brain areas and nuclei, cortical layers, columns, and cell clusters down to single cell morphology Methods for brain mapping and cell segmentation exploit such images to enable rapid and automated analysis of cytoarchitecture and cell distribution in complete series of histological sections. However, the presence of inevitable processing artifacts in the image data caused by missing sections, tears in the tissue, or staining variations remains the primary reason for gaps in the resulting image data. To this end we aim to provide a model that can fill in missing information in a reliable way, following the true cell distribution at different scales. Inspired by the recent success in image generation, we propose a denoising diffusion probabilistic model (DDPM), trained on light-microscopic scans of cell-body stained sections. We extend this model with the RePaint method to impute missing or replace corrupted image data. We show that our trained DDPM is able to generate highly realistic image information for this purpose, generating plausible cell statistics and cytoarchitectonic patterns. We validate its outputs using two established downstream task models trained on the same data.Comment: Submitted to ISBI-202

    Evolution of Labrador Sea–Baffin Bay: Plate or Plume Processes?

    Get PDF
    Breakup between Greenland and Canada resulted in oceanic spreading in the Labrador Sea and Baffin Bay. These ocean basins are connected through the Davis Strait, a bathymetric high comprising primarily continental lithosphere, and the focus of the West Greenland Tertiary volcanic province. It has been suggested that a mantle plume facilitated this breakup and generated the associated magmatism. Plume-driven breakup predicts that the earliest, most extensive rifting, magmatism and initial seafloor spreading starts in the same locality, where the postulated plume impinged. Observations from the Labrador Sea–Baffin Bay area do not accord with these predictions. Thus, the plume hypothesis is not confirmed at this locality unless major ad hoc variants are accepted. A model that fits the observations better involves a thick continental lithospheric keel of orogenic origin beneath the Davis Strait that blocked the northward-propagating Labrador Sea rift resulting in locally enhanced magmatism. The Davis Strait lithosphere was thicker and more resilient to rifting because the adjacent Paleoproterozoic Nagssugtoqidian and Torngat orogenic belts contain structures unfavourably orientated with respect to the extensional stress field at the time

    Late Cretaceous-Cenozoic basin inversion and palaeostress fields in the North Atlantic-western Alpine-Tethys realm : implications for intraplate tectonics

    Get PDF
    The authors wish to acknowledge the feedback of two anonymous reviewers, whose comments and suggestions have led to a substantially improved manuscript. CS's (now at Uppsala University, Sweden) postdoctoral fellowship at Durham University was financed by the Carlsberg Foundation. AP's (now at McMaster University, Canada) postdoctoral fellowship at Memorial University of Newfoundland was funded by the Hibernia project geophysics support fund. SJ's postdoctoral fellowship at the University of Calgary is funded by Natural Sciences and Engineering Research Council of Canada.Peer reviewedPostprin
    corecore