180 research outputs found

    Magnetoelastic relaxations in EuTiO3

    Get PDF
    The multiferroic properties of EuTiO3 are greatly enhanced when a sample is strained, signifying that coupling between strain and structural, magnetic or ferroelectric order parameters is extremely important. Here resonant ultrasound spectroscopy has been used to investigate strain coupling effects, as well as possible additional phase transitions, through their influence on elastic and anelastic relaxations that occur as a function of temperature between 2 and 300 K and with applied magnetic field up to 14 T. Antiferromagnetic ordering is accompanied by acoustic loss and softening, and a weak magnetoelastic effect is also associated with the change in magnetization direction below . Changes in loss due to the influence of magnetic field suggest the existence of magnetic defects which couple with strain and may play a role in pinning of ferroelastic twin walls

    Do fish go with the flow? The effects of periodic and episodic flow pulses on 0+ fish biomass in a constrained lowland river

    Get PDF
    The hydrological regime is a significant driver of fish population dynamics in rivers, but there is a dearth of information regarding the mechanisms behind its effects on temperate species, especially non-salmonids. This study investigated the effects of periodic and episodic flow pulses on 0+ fish biomass in a constrained lowland river. De-seasonalized cross-correlation analysis was used to examine time-lagged correlations in episodic signals, in isolation of seasonal periodicity, to identify the responses and response timings of 0+ fish production to abiotic variables, and whether apparent “pulse-depletions” in biomass occur instantaneously (e.g., due to fish displacement during high pulses) or after a time lag. As anticipated, 0+ fish biomass was highest during periods of low discharge and high temperatures in summer, but cross-correlation analysis revealed a negative impact of high pulses on 0+ fish biomass with a lag of 7 months. There was no evidence for an instantaneous pulse-depletion effect of discharge on 0+ fish biomass, suggesting that the indirect effects of high pulses, such as habitat or food-web modifications, are more influential

    Assessing the conservation value of waterbodies: the example of the Loire floodplain (France)

    Get PDF
    In recent decades, two of the main management tools used to stem biodiversity erosion have been biodiversity monitoring and the conservation of natural areas. However, socio-economic pressure means that it is not usually possible to preserve the entire landscape, and so the rational prioritisation of sites has become a crucial issue. In this context, and because floodplains are one of the most threatened ecosystems, we propose a statistical strategy for evaluating conservation value, and used it to prioritise 46 waterbodies in the Loire floodplain (France). We began by determining a synthetic conservation index of fish communities (Q) for each waterbody. This synthetic index includes a conservation status index, an origin index, a rarity index and a richness index. We divided the waterbodies into 6 clusters with distinct structures of the basic indices. One of these clusters, with high Q median value, indicated that 4 waterbodies are important for fish biodiversity conservation. Conversely, two clusters with low Q median values included 11 waterbodies where restoration is called for. The results picked out high connectivity levels and low abundance of aquatic vegetation as the two main environmental characteristics of waterbodies with high conservation value. In addition, assessing the biodiversity and conservation value of territories using our multi-index approach plus an a posteriori hierarchical classification methodology reveals two major interests: (i) a possible geographical extension and (ii) a multi-taxa adaptation

    Elastic and anelastic relaxation behaviour of perovskite multiferroics I: PbZr0.53Ti0.47O3(PZT)-PbFe0.5Nb0.5O3(PNF)

    Get PDF
    Perovskites in the ternary system PbTiO3 (PT)–PbZrO3 (PZ)–Pb(Fe0.5Nb0.5)O3 (PFN) have attracted close interest because they can display simultaneous ferroelectric, magnetic and ferroelastic properties. Those with the most sensitive response to external fields are likely to have compositions near the morphotropic phase boundary (MPB) which lies close to the binary join Pb(Zr0.53Ti0.47)O3 (PZT)–PFN. In the present study, the strength and dynamics of strain coupling behaviour which accompanies the development of ferroelectricity and (anti)ferromagnetism in ceramic PZT–PFN samples have been investigated by resonant ultrasound spectroscopy. Elastic softening ahead of the cubic–tetragonal transition does not fit with models based on dispersion of the soft mode or relaxor characteristics but is attributed, instead, to coupling between acoustic modes and a central peak mode from correlated relaxations and/or microstructure dynamics. Softening of the shear modulus through the transition by up to ~50 % fits with the expected pattern for linear/quadratic strain/order parameter coupling at an improper ferroelastic transition and close to tricritical evolution for the order parameter. Superattenuation of acoustic resonances in a temperature interval of ~100 K below the transition point is indicative of mobile ferroelastic twin walls. By way of contrast, the first-order tetragonal–monoclinic transition involves only a small change in the shear modulus and is not accompanied by significant changes in acoustic dissipation. The dominant feature of the elastic and anelastic properties at low temperatures is a concave-up variation of the shear modulus and relatively high loss down to the lowest temperature, which appears to be the signature of materials with substantial local strain heterogeneity and a spectrum of strain relaxation times. No evidence of magnetoelastic coupling has been found, in spite of the samples displaying ferromagnetism below ~550 K and possible spin glass ordering below ~50 K. For the important multiferroic perovskite ceramics with compositions close to the MPB of ternary PT-PZ-PFN, there must be some focus in future on the role of strain heterogeneity

    Elastic and anelastic relaxation behaviour of perovskite multiferroics II: PbZr0.53Ti0.47O3 (PZT)–PbFe0.5Ta0.5O3 (PFT)

    Get PDF
    Elastic and anelastic properties of ceramic samples of multiferroic perovskites with nominal compositions across the binary join PbZr0.53Ti0.47O3–PbFe0.5Ta0.5O3 (PZT–PFT) have been assembled to create a binary phase diagram and to address the role of strain relaxation associated with their phase transitions. Structural relationships are similar to those observed previously for PbZr0.53Ti0.47O3–PbFe0.5Nb0.5O3 (PZT–PFN), but the magnitude of the tetragonal shear strain associated with the ferroelectric order parameter appears to be much smaller. This leads to relaxor character for the development of ferroelectric properties in the end member PbFe0.5Ta0.5O3. As for PZT–PFN, there appear to be two discrete instabilities rather than simply a reorientation of the electric dipole in the transition sequence cubic–tetragonal–monoclinic, and the second transition has characteristics typical of an improper ferroelastic. At intermediate compositions, the ferroelastic microstructure has strain heterogeneities on a mesoscopic length scale and, probably, also on a microscopic scale. This results in a wide anelastic freezing interval for strain-related defects rather than the freezing of discrete twin walls that would occur in a conventional ferroelastic material. In PFT, however, the acoustic loss behaviour more nearly resembles that due to freezing of conventional ferroelastic twin walls. Precursor softening of the shear modulus in both PFT and PFN does not fit with a Vogel–Fulcher description, but in PFT there is a temperature interval where the softening conforms to a power law suggestive of the role of fluctuations of the order parameter with dispersion along one branch of the Brillouin zone. Magnetic ordering appears to be coupled only weakly with a volume strain and not with shear strain but, as with multiferroic PZT–PFN perovskites, takes place within crystals which have significant strain heterogeneities on different length scales

    Ferroelasticity, anelasticity and magnetoelastic relaxation in Co-doped iron pnictide: Ba(Fe0.957Co0.043)₂As₂

    Get PDF
    The hypothesis that strain has a permeating influence on ferroelastic, magnetic and superconducting transitions in 122 iron pnictides has been tested by investigating variations of the elastic and anelastic properties of a single crystal of Ba(Fe0.957Co0.043)2As2 by resonant ultrasound spectroscopy as a function of temperature and externally applied magnetic field. Non-linear softening and stiffening of C 66 in the stability fields of both the tetragonal and orthorhombic structures has been found to conform quantitatively to the Landau expansion for a pseudoproper ferroelastic transition which is second order in character. The only exception is that the transition occurs at a temperature (T S  ≈  69 K) ~10 K above the temperature at which C 66 would extrapolate to zero (  ≈  59 K). An absence of anomalies associated with antiferromagnetic ordering below T N  ≈  60 K implies that coupling of the magnetic order parameter with shear strain is weak. It is concluded that linear-quadratic coupling between the structural/electronic and antiferromagnetic order parameters is suppressed due to the effects of local heterogeneous strain fields arising from the substitution of Fe by Co. An acoustic loss peak at ~50–55 K is attributed to the influence of mobile ferroelastic twin walls that become pinned by a thermally activated process involving polaronic defects. Softening of C 66 by up to ~6% below the normal—superconducting transition at T c  ≈  13 K demonstrates an effective coupling of the shear strain with the order parameter for the superconducting transition which arises indirectly as a consequence of unfavourable coupling of the superconducting order parameter with the ferroelastic order parameter. Ba(Fe0.957Co0.043)2As2 is representative of 122 pnictides as forming a class of multiferroic superconductors in which elastic strain relaxations underpin almost all aspects of coupling between the structural, magnetic and superconducting order parameters and of dynamic properties of the transformation microstructures they contain
    corecore