300 research outputs found

    Using urban climate modelling and improved land use classifications to support climate change adaptation in urban environments: A case study for the city of Klagenfurt, Austria

    Get PDF
    This study outlines the results of current and future climate scenarios, and potentially realizable climate adaptation measures, for the city of Klagenfurt, Austria. For this purpose, we used the microscale urban climate model (MUKLIMO_3), in conjunction with the cuboid method, to calculate climate indices such as the average number of summer and hot days per year. For the baseline simulation, we used meteorological measurements from 1981 to 2010 from the weather station located at Klagenfurt Airport. Individual building structures and canopy cover from several land monitoring services were used to derive accurate properties for land use classes in the study domain. To characterize the effectiveness of climate adaptation strategies, we compared changes in the climate indices for several (future) climate adaptation scenarios to the reference simulation. Specifically, we considered two major adaptation pathways: (i) an increase in the albedo values of sealed areas (i.e., roofs, walls and streets) and (ii) an increase in green surfaces (i.e., lawns on streets and at roof level) and high vegetated areas (i.e., trees). The results indicate that some climate adaptation measures show higher potential in mitigating hot days than others, varying between reductions of 2.3 to 11.0%. An overall combination of adaptation measures leads to a maximum reduction of up to 44.0%, indicating a clear potential for reduction/mitigation of urban heat loads. Furthermore, the results for the future scenarios reveal the possibility to remain at the current level of urban heat load during the daytime over the next three decades for the overall combination of measures

    Atomic Carbon in M82: Physical conditions derived from simultaneous observations of the [CI] fine structure submillimeter wave transitions

    Get PDF
    We report the first extragalactic detection of the neutral carbon [CI] 3P2-3P1 fine structure line at 809 GHz. The line was observed towards M82 simultaneously with the 3P1-3P0 line at 492 GHz, providing a precise measurement of the J=2-1/J=1-0 integrated line ratio of 0.96 (on a [K km s^-1] -scale). This ratio constrains the [CI] emitting gas to have a temperature of at least 50 K and a density of at least 10^4 cm^-3. Already at this minimum temperature and density, the beam averaged CI-column density is large, 2.1 10^18 cm^-2, confirming the high CI/CO abundance ratio of approximately 0.5 estimated earlier from the 492 GHz line alone. We argue that the [CI] emission from M82 most likely arises in clouds of linear size around a few pc with a density of about 10^4 cm^-3 or slightly higher and temperatures of 50 K up to about 100 K.Comment: 4 pages, 2 figures, ApJL in press, postscript also available at ftp://apollo.ph1.uni-koeln.de/pub/stutzki/m82_pap.ps.gz e-mail-contact:[email protected]

    The Distribution of Water Emission in M17SW

    Get PDF
    We present a 17-point map of the M17SW cloud core in the 1_{10}-1_{01} transition of ortho-water at 557 GHz obtained with the Submillimeter Wave Astronomy Satellite. Water emission was detected in 11 of the 17 observed positions. The line widths of the water emission vary between 4 and 9 km s^{-1}, and are similar to other emission lines that arise in the M17SW core. A direct comparison is made between the spatial extent of the water emission and the ^{13}CO J = 5\to4 emission; the good agreement suggests that the water emission arises in the same warm, dense gas as the ^{13}CO emission. A spectrum of the H_2^{18}O line was also obtained at the center position of the cloud core, but no emission was detected. We estimate that the average abundance of ortho-water relative to H_2 within the M17 dense core is approximately 1x10^{-9}, 30 times smaller than the average for the Orion core. Toward the H II region/molecular cloud interface in M17SW the ortho-water abundance may be about 5 times larger than in the dense core.Comment: 4 pages, 3 Postscript figures, uses aastex.cls, emulateapj5.sty (included), and apjfonts.sty (included

    Water Abundance in Molecular Cloud Cores

    Get PDF
    We present Submillimeter Wave Astronomy Satellite (SWAS) observations of the 1_{10}-1_{01} transition of ortho-water at 557 GHz toward 12 molecular cloud cores. The water emission was detected in NGC 7538, Rho Oph A, NGC 2024, CRL 2591, W3, W3(OH), Mon R2, and W33, and was not detected in TMC-1, L134N, and B335. We also present a small map of the water emission in S140. Observations of the H_2^{18}O line were obtained toward S140 and NGC 7538, but no emission was detected. The abundance of ortho-water relative to H_2 in the giant molecular cloud cores was found to vary between 6x10^{-10} and 1x10^{-8}. Five of the cloud cores in our sample have previous water detections; however, in all cases the emission is thought to arise from hot cores with small angular extents. The water abundance estimated for the hot core gas is at least 100 times larger than in the gas probed by SWAS. The most stringent upper limit on the ortho-water abundance in dark clouds is provided in TMC-1, where the 3-sigma upper limit on the ortho-water fractional abundance is 7x10^{-8}.Comment: 5 pages, 3 Postscript figures, uses aastex.cls, emulateapj5.sty (included), and apjfonts.sty (included

    First observations with CONDOR, a 1.5 THz heterodyne receiver

    Get PDF
    The THz atmospheric windows centered at roughly 1.3 and 1.5~THz, contain numerous spectral lines of astronomical importance, including three high-J CO lines, the N+ line at 205 microns, and the ground transition of para-H2D+. The CO lines are tracers of hot (several 100K), dense gas; N+ is a cooling line of diffuse, ionized gas; the H2D+ line is a non-depleting tracer of cold (~20K), dense gas. As the THz lines benefit the study of diverse phenomena (from high-mass star-forming regions to the WIM to cold prestellar cores), we have built the CO N+ Deuterium Observations Receiver (CONDOR) to further explore the THz windows by ground-based observations. CONDOR was designed to be used at the Atacama Pathfinder EXperiment (APEX) and Stratospheric Observatory For Infrared Astronomy (SOFIA). CONDOR was installed at the APEX telescope and test observations were made to characterize the instrument. The combination of CONDOR on APEX successfully detected THz radiation from astronomical sources. CONDOR operated with typical Trec=1600K and spectral Allan variance times of 30s. CONDOR's first light observations of CO 13-12 emission from the hot core Orion FIR4 (= OMC1 South) revealed a narrow line with T(MB) = 210K and delta(V)=5.4km/s. A search for N+ emission from the ionization front of the Orion Bar resulted in a non-detection. The successful deployment of CONDOR at APEX demonstrates the potential for making observations at THz frequencies from ground-based facilities.Comment: 4 pages + list of objects, 3 figures, to be published in A&A special APEX issu

    Urban Heat Island Hazard and Risk Indices for Austria

    Get PDF
    This collection contains two geotiffs: the UHI Hazard Index and the UHI Risk Index, both for Austria at a 100 m resolution. The methodology for their development is described in the attached factsheets (in English and German)

    Herschel observations of EXtra-Ordinary Sources: The Terahertz spectrum of Orion KL seen at high spectral resolution

    Get PDF
    We present the first high spectral resolution observations of Orion KL in the frequency ranges 1573.4 - 1702.8 GHz (band 6b) and 1788.4 - 1906.8 GHz (band 7b) obtained using the HIFI instrument on board the Herschel Space Observatory. We characterize the main emission lines found in the spectrum, which primarily arise from a range of components associated with Orion KL including the hot core, but also see widespread emission from components associated with molecular outflows traced by H2O, SO2, and OH. We find that the density of observed emission lines is significantly diminished in these bands compared to lower frequency Herschel/HIFI bands.Comment: Accepted for publication in the Herschel HIFI special issue of Astronomy and Astrophysics Letters, 5 pages, 3 figure

    Herschel observations of extra-ordinary sources: Detection of Hydrogen Fluoride in absorption towards Orion~KL

    Get PDF
    We report a detection of the fundamental rotational transition of hydrogen fluoride in absorption towards Orion KL using Herschel/HIFI. After the removal of contaminating features associated with common molecules ("weeds"), the HF spectrum shows a P-Cygni profile, with weak redshifted emission and strong blue-shifted absorption, associated with the low-velocity molecular outflow. We derive an estimate of 2.9 x 10^13 cm^-2 for the HF column density responsible for the broad absorption component. Using our best estimate of the H2 column density within the low-velocity molecular outflow, we obtain a lower limit of ~1.6 x 10^-10 for the HF abundance relative to hydrogen nuclei, corresponding to 0.6% of the solar abundance of fluorine. This value is close to that inferred from previous ISO observations of HF J=2--1 absorption towards Sgr B2, but is in sharp contrast to the lower limit of 6 x 10^-9 derived by Neufeld et al. (2010) for cold, foreground clouds on the line of sight towards G10.6-0.4.Comment: 5 pages, 3 figures, paper to be published in the Herschel special issue of A&A letter
    • …
    corecore