2,989 research outputs found

    Time-Reversal Symmetry-Breaking Superconductivity in Heavy Fermion PrOs4Sb12 detected by Muon Spin Relaxation

    Full text link
    We report on muon spin relaxation measurements of the 4f^2-based heavy-fermion superconductor filled-skutterudite PrOs4Sb12. The results reveal the spontaneous appearance of static internal magnetic fields below the superconducting transition temperature, providing unambiguous evidence for the breaking of time-reversal symmetry in the superconducting state. A discussion is made on which of the spin or orbital component of Cooper pairs carries a nonzero momentum.Comment: 5 pages with 3 figure

    Magnetic Phase Diagram of the Hole-doped Ca2x_{2-x}Nax_{x}CuO2_{2}Cl2_{2} Cuprate Superconductor

    Full text link
    We report on the magnetic phase diagram of a hole-doped cuprate Ca2x_{2-x}Nax_{x}CuO2_{2}Cl2_{2}, which is free from buckling of CuO2_2 planes, determined by muon spin rotation and relaxation. It is characterized by a quasi-static spin glass-like phase over a range of sodium concentration (0.05x0.120.05\leq x\leq 0.12), which is held between long range antiferromagnetic (AF) phase (x0.02x\leq 0.02) and superconducting phase where the system is non-magnetic for x0.15x\geq 0.15. The obtained phase diagram qualitatively agrees well with that commonly found for hole-doped high-\tc cuprates, strongly suggesting that the incomplete suppression of the AF order for x>0.02x>0.02 is an essential feature of the hole-doped cuprates.Comment: 5 pages, submitted to Phys. Rev. Let

    Spin dynamics and spin freezing in the triangular lattice antiferromagnets FeGa2S4 and NiGa2S4

    Full text link
    Magnetic susceptibility and muon spin relaxation (muSR) experiments have been carried out on the quasi-2D triangular-lattice spin S = 2 antiferromagnet FeGa2S4. The muSR data indicate a sharp onset of a frozen or nearly-frozen spin state at T* = 31(2) K, twice the spin-glass-like freezing temperature T_f = 16(1) K. The susceptibility becomes field dependent below T*, but no sharp anomaly is observed in any bulk property. A similar transition is observed in muSR data from the spin-1 isomorph NiGa2S4. In both compounds the dynamic muon spin relaxation rate lambda_d(T) above T* agrees well with a calculation of spin-lattice relaxation by Chubukov, Sachdev, and Senthil in the renormalized classical regime of a 2D frustrated quantum antiferromagnet. There is no firm evidence for other mechanisms. At low temperatures lambda_d(T) becomes temperature independent in both compounds, indicating persistence of spin dynamics. Scaling of lambda_d(T) between the two compounds is observed from ~T_f to ~1.5T*. Although the muSR data by themselves cannot exclude a truly static spin component below T*, together with the susceptibility data they are consistent with a slowly-fluctuating "spin gel" regime between T_f and T*. Such a regime and the absence of a divergence in lambda_d(T) at T* are features of two unconventional mechanisms: (1) binding/unbinding of Z_2 vortex excitations, and (2) impurity spins in a nonmagnetic spin-nematic ground state. The absence of a sharp anomaly or history dependence at T* in the susceptibility of FeGa2S4, and the weakness of such phenomena in NiGa2S4, strongly suggest transitions to low-temperature phases with unconventional dynamics.Comment: 13 pages, 6 figures, accepted for publication in Physical Review

    Detection of Neutron Scattering from Phase IV of Ce0.7La0.3B6: A Confirmation of the Octupole Order

    Full text link
    We have performed a single crystal neutron scattering experiment on Ce0.7La0.3B6 to investigate the order parameter of phase IV microscopically. Below the phase transition temperature 1.5 K of phase IV, weak but distinct superlattice reflections at the scattering vector (h/2,h/2,l/2) (h, l = odd number) have been observed by neutron scattering for the first time. The intensity of the superlattice reflections is stronger for high scattering vectors, which is quite different from the usual magnetic form factor of magnetic dipoles. This result directly evidences that the order parameter of phase IV has a complex magnetization density, consistent with the recent experimental and theoretical prediction in which the order parameter is the magnetic octupoles Tbeta with Gamma5 symmetry of point group Oh. Neutron scattering experiments using short wavelength neutrons, as done in this study, could become a general method to study the high-rank multipoles in f electron systems.Comment: 4 pages, 4 figure

    Building Capacity for Public Health 3.0: Introducing implementation science into an MPH curriculum

    Get PDF
    Background Many public health programs fail because of an inability to implement tested interventions in diverse, complex settings. The field of implementation science is engaged in developing strategies for successful implementation, but current training is primarily researcher-focused. To tackle the challenges of the twenty-first century, public health leaders are promoting a new model titled Public Health 3.0 where public health practitioners become “chief health strategists” and develop interdisciplinary skills for multisector engagement to achieve impact. This requires broad training for public health practitioners in implementation science that includes the allied fields of systems and design thinking, quality improvement, and innovative evaluation methods. At UNC Chapel Hill’s Gillings School of Global Public Health, we created an interdisciplinary set of courses in applied implementation science for Master of Public Health (MPH) students and public health practitioners. We describe our rationale, conceptual approach, pedagogy, courses, and initial results to assist other schools contemplating similar programs. Methods Our conceptual approach recognized the vital relationship between implementation research and practice. We conducted a literature review of thought leaders in public health to identify skill areas related to implementation science that are priorities for the future workforce. We also reviewed currently available training programs in implementation science to understand their scope and objectives and to assess whether any of these would be a fit for these priorities. We used a design focused implementation framework to create four linked courses drawing from multiple fields such as engineering, management, and the social sciences and emphasizing application through case studies. We validated the course content by mapping them to implementation science competencies in the literature. Results To date, there is no other program that provides comprehensive interdisciplinary skills in applied implementation science for MPH students. As of April 2018, we have offered a total of eleven sections of the four courses, with a total enrollment of 142, of whom 127 have been master’s-level students in the school of public health. Using Kirkpatrick’s Model, we found positive student reaction, learning, and behavior. Many students have completed applied implementation science focused practicums, master’s papers, and special studies. Conclusions A systematically designed interdisciplinary curriculum in applied implementation science for MPH students has been found by students to be a useful set of skills. Students have demonstrated the capability to master this material and incorporate it into their practicums and master’s papers

    The new high field photoexcitation muon spectrometer at the ISIS pulsed neutron and muon source

    Get PDF
    A high power pulsed laser system has been installed on the high magnetic field muon spectrometer (HiFi) at the ISIS pulsed neutron and muon source, situated at the STFC Rutherford Appleton Laboratory in the UK. The upgrade enables one to perform light-pump muon-probe experiments under a high magnetic field, which opens new applications of muon spin spectroscopy. In this report we give an overview of the principle of the HiFi Laser system, and describe the newly developed techniques and devices that enable precisely controlled photoexcitation of samples in the muon instrument. A demonstration experiment illustrates the potential of this unique combination of the photoexcited system and avoided level crossing technique.Comment: 12 pages, 7 figures, and 2 table

    Muon spin rotation and relaxation in magnetic materials

    Full text link
    A review of the muon spin rotation and relaxation (μ\muSR) studies on magnetic materials published from July 1993 is presented. It covers the investigation of magnetic phase diagrams, of spin dynamics and the analysis of the magnetic properties of superconductors. We have chosen to focus on selected experimental works in these different topics. In addition, a list of published works is provided.Comment: Review article, 59 pages, LaTeX with IoP macro
    corecore