21 research outputs found

    Purification and characterization of a tartrate-sensitive acid phosphatase of Trypanosoma brucei

    Get PDF
    AbstractIn search for invariant surface proteins in Trypanosoma brucei bloodstream forms, acid phosphatase was investigated. Earlier work had shown that part of the cellular phosphatase activity is associated with the flagellar pocket of the parasite. It is demonstrated that T. brucei contains at least two membrane-bound enzymes, one is sensitive to the inhibitor L-(+)-tartrate while the other is resistant. The tartrate-sensitive phosphatase was purified to homogeneity by monoclonal antibody affinity chromatography and shown to be a glycoprotein of low abundance (13,000 molecules/ cell). It has an apparent molecular weight of 70,000 Da. The usefulness of acid phosphatase as a marker for characterizing the membrane lining the flagellar pocket is discussed

    The challenge of establishing preclinical models for segmental bone defect research

    Get PDF
    A considerable number of international research groups as well as commercial entities work on the development of new bone grafting materials, carriers, growth factors and specifically tissue-engineered constructs for bone regeneration. They are strongly interested in evaluating their concepts in highly reproducible large segmental defects in preclinical and large animal models. To allow comparison between different studies and their outcomes, it is essential that animal models, fixation devices, surgical procedures and methods of taking measurements are well standardized to produce reliable data pools and act as a base for further directions to orthopaedic and tissue engineering developments, specifically translation into the clinic. In this leading opinion paper, we aim to review and critically discuss the different large animal bone defect models reported in the literature. We conclude that most publications provide only rudimentary information on how to establish relevant preclinical segmental bone defects in large animals. Hence, we express our opinion on methodologies to establish preclinical critically sized, segmental bone defect models used in past research with reference to surgical techniques, fixation methods and postoperative management focusing on tibial fracture and segmental defect models

    Porous scaffold architecture guides tissue formation

    No full text
    Free to read Critical-sized bone defect regeneration is a remaining clinical concern. Numerous scaffold-based strategies are currently being investigated to enable in vivo bone defect healing. However, a deeper understanding of how a scaffold influences the tissue formation process and how this compares to endogenous bone formation or to regular fracture healing is missing. It is hypothesized that the porous scaffold architecture can serve as a guiding substrate to enable the formation of a structured fibrous network as a prerequirement for later bone formation. An ovine, tibial, 30-mm critical-sized defect is used as a model system to better understand the effect of the scaffold architecture on cell organization, fibrous tissue, and mineralized tissue formation mechanisms in vivo. Tissue regeneration patterns within two geometrically distinct macroscopic regions of a specific scaffold design, the scaffold wall and the endosteal cavity, are compared with tissue formation in an empty defect (negative control) and with cortical bone (positive control). Histology, backscattered electron imaging, scanning small-angle X-ray scattering, and nanoindentation are used to assess the morphology of fibrous and mineralized tissue, to measure the average mineral particle thickness and the degree of alignment, and to map the local elastic indentation modulus. The scaffold proves to function as a guiding substrate to the tissue formation process. It enables the arrangement of a structured fibrous tissue across the entire defect, which acts as a secondary supporting network for cells. Mineralization can then initiate along the fibrous network, resulting in bone ingrowth into a critical-sized defect, although not in complete bridging of the defect. The fibrous network morphology, which in turn is guided by the scaffold architecture, influences the microstructure of the newly formed bone. These results allow a deeper understanding of the mode of mineral tissue formation and the way this is influenced by the scaffold architecture. Copyright © 2012 American Society for Bone and Mineral Research

    Deformation and Recrystallization Mechanisms and Their Influence on the Microstructure Development of Rare Earth Containing Magnesium Sheets

    No full text
    Many studies have shown that textures with less distinct alignment of basal planes and the related improvement of formability are found in alloys that contain rare-earth (RE) elements and zinc. However, the effect of the combination of these additional elements on the texture modification has not been yet clearly understood. In this work, sheet samples from Mg–Zn–RE alloys rolled at 400 °C were used for in situ synchrotron X-rays diffraction measurements under tensile loading at different temperatures, in order to track the development of diffraction profiles and textures during deformation. In Mg–Zn–RE alloys, a significantly retardation of recovery and dynamic recrystallization during the high temperature deformation is observed in comparison to the RE-free Mg–Zn alloy. The differences in the active deformation mechanisms as well as the dynamic recrystallization mechanisms are reviewed with respect to the texture alteration. For discussion of the impact of different mechanisms, EBSD observations reveal the microstructure development

    Influence of Nd or Ca addition on the dislocation activity and texture changes of Mg–Zn alloy sheets under uniaxial tensile loading

    No full text
    n situ hard X-ray diffraction experiments were carried out to investigate the dislocation slip activity of Mg-1 wt.% Zn-based alloys containing Nd or Ca during tensile loading. Diffraction patterns collected during tensile loading at 3 temperatures were analyzed using a convolutional multiple whole profile fitting procedure. High activation of nonbasal and pyramidal dislocations was found in the Nd- and Ca-containing alloys. The microstructure evolution after 10% deformation was examined by complementary EBSD measurements. The microstructure evolution was related to the differences in the initial texture and active deformation modes, according to the alloying and temperature. In-grain misorientation axes analysis obtained from the EBSD measurements confirms that the addition of Nd or Ca contributes to the higher activity of prismatic slip. The high activity of prismatic slip leads to a broadening of the basal poles perpendicular to the loading direction and a strengthening of the pole along the loading direction. The overall dislocation density evolution at elevated temperatures is controlled by dynamic recovery and dynamic recrystallization. These thermally activated mechanisms are retarded in the Nd- or Ca-containing alloys

    Texture development and dislocation activities in Mg-Nd and Mg-Ca alloy sheets

    No full text
    Texture modification during sheet rolling appears differently in binary Mg-RE (rare-earth) or Mg-Ca alloy, compared to their ternary counterparts containing Zn. The differences in texture development and the active deformation mechanisms under tensile loading were investigated in the binary alloys. These analyses are based on in-situ synchrotron experiments and electron backscatter diffraction measurements to reveal direct experimental evidence of the texture development and the active deformation mechanisms. Higher activations of nonbasal and pyramidal dislocations were found in the Nd or Ca containing Mg alloys, compared to the Mg-Zn alloy. The texture development shows an obvious feature, which is a broadening of the basal pole intensity distribution perpendicular to the loading direction and a strengthening of the pole at the loading direction in all examined sheets. This texture development relates to the higher activation of prismatic slip. The addition of Zn in the Mg-RE or Mg-Ca alloys further promotes the activation of nonbasal and pyramidal dislocations. This enhanced prismatic slip in the Zn containing ternary alloys is confirmed by EBSD misorientation analysis
    corecore