2 research outputs found
Cannabidiol modulates phosphorylated rpS6 signalling in a zebrafish model of tuberous sclerosis complex
Tuberous sclerosis complex (TSC) is a rare disease caused by mutations in the TSC1 or TSC2 genes and is characterized by widespread tumour growth, intractable epilepsy, cognitive deficits and autistic behaviour. CBD has been reported to decrease seizures and inhibit tumour cell progression, therefore we sought to determine the influence of CBD on TSC pathology in zebrafish carrying a nonsense mutation in the tsc2 gene.
CBD treatment from 6 to 7 days post-fertilization (dpf) induced significant anxiolytic actions without causing sedation. Furthermore, CBD treatment from 3 dpf had no impact on tsc2-/- larvae motility nor their survival. CBD treatment did, however, reduce the number of phosphorylated rpS6 positive cells, and their cross-sectional cell size. This suggests a CBD mediated suppression of mechanistic target of rapamycin (mTOR) activity in the tsc2-/- larval brain.
Taken together, these data suggest that CBD selectively modulates levels of phosphorylated rpS6 in the brain and additionally provides an anxiolytic effect. This is pertinent given the alterations in mTOR signalling in experimental models of TSC. Additional work is necessary to identify upstream signal modulation and to further justify the use of CBD as a possible therapeutic strategy to manage TSC
Drug repurposing for Dravet syndrome in scn1Lab(-/-) mutant zebrafish
Dravet syndrome (DS) is a severe genetic epileptic encephalopathy with onset during the first year of life. Zebrafish models recapitulating human diseases are often used as drug discovery platforms, but also for drug repurposing testing. It was recently shown that pharmacological modulation of three serotonergic (5-HT) receptors (5-HT1D , 5-HT2C , 5-HT2A ) exerts antiseizure effects in a zebrafish scn1Lab-/- mutant model of DS. Using the zebrafish DS model, our aim was to examine the possibility of repurposing efavirenz (EFA), lisuride (LIS), and rizatriptan (RIZA), marketed medicines with a 5-HT on- or off-target profile, as antiepileptic drugs for DS. To examine whether these compounds have a broader antiseizure profile, they were tested in pentylenetetrazol and ethyl ketopentenoate (EKP) zebrafish models. Pharmacological effects were assessed by locomotor behavior, local field potential brain recordings, and bioluminescence. EFA was active in all models, whereas LIS was selectively active in the zebrafish DS model. Mainly, a poor response was observed to RIZA. Taken together, our preclinical results show that LIS could be a potential candidate for DS treatment. EFA was also active in the EKP model, characterized by a high level of treatment resistance, and hence these data are potentially important for future treatment of drug-resistant epilepsy.status: publishe