1,609 research outputs found
Co-Localization of Audio Sources in Images Using Binaural Features and Locally-Linear Regression
This paper addresses the problem of localizing audio sources using binaural
measurements. We propose a supervised formulation that simultaneously localizes
multiple sources at different locations. The approach is intrinsically
efficient because, contrary to prior work, it relies neither on source
separation, nor on monaural segregation. The method starts with a training
stage that establishes a locally-linear Gaussian regression model between the
directional coordinates of all the sources and the auditory features extracted
from binaural measurements. While fixed-length wide-spectrum sounds (white
noise) are used for training to reliably estimate the model parameters, we show
that the testing (localization) can be extended to variable-length
sparse-spectrum sounds (such as speech), thus enabling a wide range of
realistic applications. Indeed, we demonstrate that the method can be used for
audio-visual fusion, namely to map speech signals onto images and hence to
spatially align the audio and visual modalities, thus enabling to discriminate
between speaking and non-speaking faces. We release a novel corpus of real-room
recordings that allow quantitative evaluation of the co-localization method in
the presence of one or two sound sources. Experiments demonstrate increased
accuracy and speed relative to several state-of-the-art methods.Comment: 15 pages, 8 figure
Wendy Michallat. French Cartoon Art in the 1960s and 1970s: Pilote hebdomadaire and the Teenager Bande Dessinée. Leuven UP, 2018.
Review of Wendy Michallat. French Cartoon Art in the 1960s and 1970s: Pilote hebdomadaire and the Teenager Bande Dessinée. Leuven UP, 2018. 268 pp
Full- & Reduced-Order State-Space Modeling of Wind Turbine Systems with Permanent-Magnet Synchronous Generator
Wind energy is an integral part of nowadays energy supply and one of the
fastest growing sources of electricity in the world today. Accurate models for
wind energy conversion systems (WECSs) are of key interest for the analysis and
control design of present and future energy systems. Existing control-oriented
WECSs models are subject to unstructured simplifications, which have not been
discussed in literature so far. Thus, this technical note presents are thorough
derivation of a physical state-space model for permanent magnet synchronous
generator WECSs. The physical model considers all dynamic effects that
significantly influence the system's power output, including the switching of
the power electronics. Alternatively, the model is formulated in the -
and -reference frame. Secondly, a complete control and operation
management system for the wind regimes II and III and the transition between
the regimes is presented. The control takes practical effects such as input
saturation and integral windup into account. Thirdly, by a structured model
reduction procedure, two state-space models of WECS with reduced complexity are
derived: a non-switching model and a non-switching reduced-order model. The
validity of the models is illustrated and compared through a numerical
simulation study.Comment: 23 pages, 11 figure
- …