4,140 research outputs found

    Nuclear composition and heating in accreting neutron-star crusts

    Full text link
    Nuclear reactions in accreting neutron-star crusts and the heat release accompanying them are studied, under different assumptions concerning the composition of the outermost layer formed of the ashes of X-ray bursts. Particular examples of ashes containing nuclides with A ~ 90-110 are considered and compared with a standard A=56 case. In all cases, evolution of a crust shell is followed from 10^8 g/cm^3 to a few times 10^{13} g/cm^3. The total crustal heating produced in the non-equilibrium processes in the accreting crust is 1.1-1.5 MeV per one accreted nucleon. The composition of the accreted crust at densities exceeding the threshold for the pycnonuclear fusion is essentially independent of the assumed initial composition of the X-ray burst ashes.Comment: 5 pages, 2 figures, accepted for publication in A&A Letter

    Wirespeed: Extending the AFF4 forensic container format for scalable acquisition and live analysis

    Get PDF
    AbstractCurrent approaches to forensic acquisition are failing to scale to large devices and fast storage interfaces. The research described in this paper identifies limitations in current widely deployed forensic image formats which limit both the ability to acquire evidence at maximal rates, and to undertake live analysis in today's environment. Extensions to the AFF4 forensic file format are proposed which address these limitations. The proposals have been implemented and proof of concept demonstrated by demonstrating that non-linear partial images may be taken at rates that exceed current physical acquisition approaches, and by demonstrating linear acquisition at rates significantly exceeding current approaches: in the range of 400 MB/s–500 MB/s (24–30 GB/min)

    Models of crustal heating in accreting neutron stars

    Full text link
    Heating associated with non-equilibrium nuclear reactions in accreting neutron-star crusts is reconsidered, taking into account suppression of neutrino losses demonstrated recently by Gupta et al. Two initial compositions of the nuclear burning ashes, A=56 and A=106, are considered. Dependence of the integrated crustal heating on uncertainties plaguing pycnonuclear reaction models is studied. One-component plasma approximation is used, with compressible liquid-drop model of Mackie and Baym to describe nuclei. Evolution of a crust shell is followed from 10^8 g/cm^3 to 10^(13.6) g/cm^3 The integrated heating in the outer crust agrees nicely with results of self-considtent multicomponent plasma simulations of Gupta et al.; their results fall between our curves obtained for A=56 and A=106. Total crustal heat per one accreted nucleon ranges between 1.5 MeV to 1.9 MeV for A=106 and A=56, respectively. The value of total crustal heat per nucleon depends weakly on the presence of pycnonuclear reactions at densities 10^(12)-10^(13) g/cm^3. Remarkable insensitivity of the total crustal heat on the details of the distribution of nuclear processes in accreted crust is explained.Comment: 8 pages, 5 figures, Submitted to A&

    AFM pulling and the folding of donor-acceptor oligorotaxanes: phenomenology and interpretation

    Full text link
    The thermodynamic driving force in the self-assembly of the secondary structure of a class of donor-acceptor oligorotaxanes is elucidated by means of molecular dynamics simulations of equilibrium isometric single-molecule force spectroscopy AFM experiments. The oligorotaxanes consist of cyclobis(paraquat-\emph{p}-phenylene) rings threaded onto an oligomer of 1,5-dioxynaphthalenes linked by polyethers. The simulations are performed in a high dielectric medium using MM3 as the force field. The resulting force vs. extension isotherms show a mechanically unstable region in which the molecule unfolds and, for selected extensions, blinks in the force measurements between a high-force and a low-force regime. From the force vs. extension data the molecular potential of mean force is reconstructed using the weighted histogram analysis method and decomposed into energetic and entropic contributions. The simulations indicate that the folding of the oligorotaxanes is energetically favored but entropically penalized, with the energetic contributions overcoming the entropy penalty and effectively driving the self-assembly. In addition, an analogy between the single-molecule folding/unfolding events driven by the AFM tip and the thermodynamic theory of first-order phase transitions is discussed and general conditions, on the molecule and the cantilever, for the emergence of mechanical instabilities and blinks in the force measurements in equilibrium isometric pulling experiments are presented. In particular, it is shown that the mechanical stability properties observed during the extension are intimately related to the fluctuations in the force measurements.Comment: 42 pages, 17 figures, accepted to the Journal of Chemical Physic

    Dependence of X-Ray Burst Models on Nuclear Reaction Rates

    Full text link
    X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p,γ\gamma), (α\alpha,γ\gamma), and (α\alpha,p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to match calculations with a state-of-the-art 1D multi-zone model based on the {\Kepler} stellar evolution code. All relevant reaction rates on neutron deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 highest impact reaction rate changes were then repeated in the 1D multi-zone model. We find a number of uncertain reaction rates that affect predictions of light curves and burst ashes significantly. The results provide insights into the nuclear processes that shape X-ray burst observables and guidance for future nuclear physics work to reduce nuclear uncertainties in X-ray burst models.Comment: 24 pages, 13 figures, 4 tables, submitte

    Long-Wavelength Instability in Surface-Tension-Driven Benard Convection

    Full text link
    Laboratory studies reveal a deformational instability that leads to a drained region (dry spot) in an initially flat liquid layer (with a free upper surface) heated uniformly from below. This long-wavelength instability supplants hexagonal convection cells as the primary instability in viscous liquid layers that are sufficiently thin or are in microgravity. The instability occurs at a temperature gradient 34% smaller than predicted by linear stability theory. Numerical simulations show a drained region qualitatively similar to that seen in the experiment.Comment: 4 pages. The RevTeX file has a macro allowing various styles. The appropriate style is "mypprint" which is the defaul

    16GT: A fast and sensitive variant caller using a 16-genotype probabilistic model

    Get PDF
    © The Author 2017. Published by Oxford University Press. 16GT is a variant caller for Illumina whole-genome and whole-exome sequencing data. It uses a new 16-genotype probabilistic model to unify single nucleotide polymorphism and insertion and deletion calling in a single variant calling algorithm. In benchmark comparisons with 5 other widely used variant callers on a modern 36-core server, 16GT demonstrated improved sensitivity in calling single nucleotide polymorphisms, and it provided comparable sensitivity and accuracy for calling insertions and deletions as compared to the GATK HaplotypeCaller. 16GT is available at https://github.com/aquaskyline/16GT.Link_to_subscribed_fulltex

    Models for Type I X-Ray Bursts with Improved Nuclear Physics

    Get PDF
    Multi-zone models of Type I X-ray bursts are presented that use an adaptive nuclear reaction network of unprecedented size, up to 1300 isotopes. Sequences of up to 15 bursts are followed for two choices of accretion rate and metallicity. At 0.1 Eddington (and 0.02 Eddington for low metallicity), combined hydrogen-helium flashes occur. The rise times, shapes, and tails of these light curves are sensitive to the efficiency of nuclear burning at various waiting points along the rp-process path and these sensitivities are explored. The bursts show "compositional inertia", in that their properties depend on the fact that accretion occurs onto the ashes of previous bursts which contain left-over hydrogen, helium and CNO nuclei. This acts to reduce the sensitivity of burst properties to metallicity. For the accretion rates studied, only the first anomalous burst in one model produces nuclei as heavy as A=100, other bursts make chiefly nuclei with A~64. The amount of carbon remaining after hydrogen-helium bursts is typically <1% by mass, and decreases further as the ashes are periodically heated by subsequent bursts. At the lower accretion rate of 0.02 Eddington and solar metallicity, the bursts ignite in a hydrogen-free helium layer. At the base of this layer, up to 90% of the helium has already burned to carbon prior to the unstable ignition. These helium-ignited bursts have briefer, brighter light curves with shorter tails, very rapid rise times (<0.1 s), and ashes lighter than the iron group.Comment: Submitted to the Astrophysical Journal (42 pages; 27 figures

    On the linear response and scattering of an interacting molecule-metal system

    Full text link
    A many-body Green's function approach to the microscopic theory of plasmon-enhanced spectroscopy is presented within the context of localized surface-plasmon resonance spectroscopy and applied to investigate the coupling between quantum-molecular and classical-plasmonic resonances in monolayer-coated silver nanoparticles. Electronic propagators or Green's functions, accounting for the repeated polarization interaction between a single molecule and its image in a nearby nanoscale metal, are explicitly computed and used to construct the linear-response properties of the combined molecule-metal system to an external electromagnetic perturbation. Shifting and finite lifetime of states appear rigorously and automatically within our approach and reveal an intricate coupling between molecule and metal not fully described by previous theories. Self-consistent incorporation of this quantum-molecular response into the continuum-electromagnetic scattering of the molecule-metal target is exploited to compute the localized surface-plasmon resonance wavelength shift with respect to the bare metal from first principles.Comment: under review at Journal of Chemical Physic
    • …
    corecore