41 research outputs found

    Inflammation, fibrosis and skeletal muscle regeneration in LGMDR9 are orchestrated by macrophages

    Get PDF
    Aims: Variable degrees of inflammation, necrosis, regeneration and fibrofatty replacement are part of the pathological spectrum of the dystrophic process in alpha dystroglycanopathy LGMDR9 (FKRP-related, OMIM #607155), one of the most prevailing types of LGMDs worldwide. Inflammatory processes and their complex interplay with vascular, myogenic and mesenchymal cells may have a major impact on disease development. The purpose of our study is to describe the specific immune morphological features in muscle tissue of patients with LGMDR9 to enable a better understanding of the phenotype of muscle damage leading to disease progression. Methods: We have analysed skeletal muscle biopsies of 17 patients genetically confirmed as having LGMDR9 by histopathological and molecular techniques. Results: We identified CD206+ MHC class II+ and STAT6+ immune-repressed macrophages dominating the endomysial infiltrate in areas of myofibre regeneration and fibrosis. Additionally, PDGFRβ+ pericytes were located around MHC class II+ activated capillaries residing in close proximity to areas of fibrosis and regenerating fibres. Expression of VEGF was found on many regenerating neonatal myosin+ fibres, myofibres and CD206+ macrophages also co-expressed VEGF. Conclusion: Our results show characteristic immune inflammatory features in LGMDR9 and more specifically shed light on the predominant role of macrophages and their function in vascular organisation, fibrosis and myogenesis. Understanding disease-specific immune phenomena potentially inform about possibilities for anti-fibrotic and anti-inflammatory therapeutic strategies, which may complement Ribitol replacement and gene therapies for LGMDR9 that may be available in the future

    A de novo CSDE1 variant causing neurodevelopmental delay, intellectual disability, neurologic and psychiatric symptoms in a child of consanguineous parents.

    Get PDF
    Funder: National Human Genome Research Institute; Id: http://dx.doi.org/10.13039/100000051Funder: Broad Institute; Id: http://dx.doi.org/10.13039/100013114Funder: Horizon 2020; Id: http://dx.doi.org/10.13039/100010661Funder: Muscular Dystrophy Canada; Id: http://dx.doi.org/10.13039/501100000223Funder: Evelyn Trust; Id: http://dx.doi.org/10.13039/501100004282Funder: European Regional Development Fund; Id: http://dx.doi.org/10.13039/501100008530CSDE1 encodes the cytoplasmic cold shock domain-containing protein E1 (CSDE1), which is highly conserved across species and functions as an RNA-binding protein involved in translationally coupled mRNA turnover. CSDE1 displays a bidirectional role: promoting and repressing the translation of RNAs but also increasing and decreasing the abundance of RNAs. Preclinical studies highlighted an involvement of CSDE1 in different forms of cancer. Moreover, CSDE1 is highly expressed in human embryonic stem cells and plays a role in neuronal migration and differentiation. A genome-wide association study suggested CSDE1 as a potential autism-spectrum disorder risk gene. A multicenter next generation sequencing approach unraveled likely causative heterozygous variants in CSDE1 in 18 patients, identifying a new autism spectrum disorder-related syndrome consisting of autism, intellectual disability, and neurodevelopmental delay. Since then, no further patients with CSDE1 variants have been reported in the literature. Here, we report a 9.5-year-old girl from a consanguineous family of Turkish origin suffering from profound delayed speech and motor development, moderate intellectual disability, neurologic and psychiatric symptoms as well as hypoplasia of corpus callosum and mildly reduced brain volume on brain magnetic resonance imaging associated with a recurrent de novo mutation in CSDE1 (c.367C > T; p.R123*) expanding the phenotypical spectrum associated with pathogenic CSDE1 variants

    Deep RNA sequencing of muscle tissue reveals absence of viral signatures in dermatomyositis

    Get PDF
    Objective: To explore a possible connection between active viral infections and manifestation of Dermatomyositis (DM). Methods: Skeletal muscle biopsies were analyzed from patients diagnosed with juvenile (n=10) and adult (n=12) DM. Adult DM patients harbored autoantibodies against either TIF-1γ (n=7) or MDA5 (n=5). Additionally, we investigated skeletal muscle biopsies from non-diseased controls (NDC, n=5). We used an unbiased high-throughput sequencing (HTS) approach to detect viral sequences. To further increase sequencing depth, a host depletion approach was applied. Results: In this observational study, no relevant viral sequences were detected either by native sequencing or after host depletion. The absence of detectable viral sequences makes an active viral infection of the muscle tissue unlikely to be the cause of DM in our cohorts. Discussion: Type I interferons (IFN) play a major role in the pathogenesis of both juvenile and adult dermatomyositis (DM). The IFN response is remarkably conserved between DM subtypes classified by specific autoantibodies. Certain acute viral infections are accompanied by a prominent type I IFN response involving similar downstream mechanisms as in DM. Aiming to elucidate the pathogenesis of DM in skeletal muscle tissue, we used an untargeted high-throughput sequencing and a host depletion approach to detect possible causative viruses

    Novel insights into PORCN mutations, associated phenotypes and pathophysiological aspects.

    Get PDF
    BACKGROUND: Goltz syndrome (GS) is a X-linked disorder defined by defects of mesodermal- and ectodermal-derived structures and caused by PORCN mutations. Features include striated skin-pigmentation, ocular and skeletal malformations and supernumerary or hypoplastic nipples. Generally, GS is associated with in utero lethality in males and most of the reported male patients show mosaicism (only three non-mosaic surviving males have been described so far). Also, precise descriptions of neurological deficits in GS are rare and less severe phenotypes might not only be caused by mosaicism but also by less pathogenic mutations suggesting the need of a molecular genetics and functional work-up of these rare variants. RESULTS: We report two cases: one girl suffering from typical skin and skeletal abnormalities, developmental delay, microcephaly, thin corpus callosum, periventricular gliosis and drug-resistant epilepsy caused by a PORCN nonsense-mutation (c.283C > T, p.Arg95Ter). Presence of these combined neurological features indicates that CNS-vulnerability might be a guiding symptom in the diagnosis of GS patients. The other patient is a boy with a supernumerary nipple and skeletal anomalies but also, developmental delay, microcephaly, cerebral atrophy with delayed myelination and drug-resistant epilepsy as predominant features. Skin abnormalities were not observed. Genotyping revealed a novel PORCN missense-mutation (c.847G > C, p.Asp283His) absent in the Genome Aggregation Database (gnomAD) but also identified in his asymptomatic mother. Given that non-random X-chromosome inactivation was excluded in the mother, fibroblasts of the index had been analyzed for PORCN protein-abundance and -distribution, vulnerability against additional ER-stress burden as well as for protein secretion revealing changes. CONCLUSIONS: Our combined findings may suggest incomplete penetrance for the p.Asp283His variant and provide novel insights into the molecular etiology of GS by adding impaired ER-function and altered protein secretion to the list of pathophysiological processes resulting in the clinical manifestation of GS

    High-sensitive cardiac troponin I (hs-cTnI) concentrations in newborns diagnosed with spinal muscular atrophy

    Get PDF
    BackgroundSpinal muscular atrophy (SMA) is a genetic neurodegenerative disease leading to muscular weakness and premature death. Three therapeutic options are currently available including gene replacement therapy (GRT), which is potentially cardiotoxic. High-sensitive cardiac troponin I (hs-cTnI) is widely used to monitor potential cardiac contraindications or side effects of GRT, but reference data in healthy newborns are limited and lacking in neonates with SMA. The aim of this study is to determine the range of pre-therapeutic hs-cTnI concentrations in neonates with SMA and to provide guidance for the assessment of these values.MethodsHs-cTnI levels, genetic and clinical data of 30 newborns (age range 2–26 days) with SMA were retrospectively collected from 6 German neuromuscular centers. In addition, hs-cTnI levels were measured in 16 neonates without SMA.ResultsThe median hs-cTnI concentration in neonates with SMA was 39.5 ng/L (range: 4–1205). In 16 newborns with SMA, hs-cTnI levels were above the test-specific upper reference limit (URL). Exploratory statistical analysis revealed no relevant correlation between hs-cTnI levels and gender, gestational age, mode of delivery, SMN2 copy number, symptoms of SMA or abnormal cardiac findings.DiscussionOur results suggest higher hs-cTnI plasma levels in newborns with and without SMA compared to assay-specific reference values generated in adults. Given the wide range of hs-cTnI values in neonates with SMA, hs-cTnI levels must be determined before treatment in each patient and post-treatment elevations should be interpreted in the context of the course rather than as individual values

    Homozygous WASHC4 variant in two sisters causes a syndromic phenotype defined by dysmorphisms, intellectual disability, profound developmental disorder, and skeletal muscle involvement.

    Get PDF
    Funder: European Regional Development Fund; Id: http://dx.doi.org/10.13039/501100008530Recessive variants in WASHC4 are linked to intellectual disability complicated by poor language skills, short stature, and dysmorphic features. The protein encoded by WASHC4 is part of the Wiskott-Aldrich syndrome protein and SCAR homolog family, co-localizes with actin in cells, and promotes Arp2/3-dependent actin polymerization in vitro. Functional studies in a zebrafish model suggested that WASHC4 knockdown may also affect skeletal muscles by perturbing protein clearance. However, skeletal muscle involvement has not been reported so far in patients, and precise biochemical studies allowing a deeper understanding of the molecular etiology of the disease are still lacking. Here, we report two siblings with a homozygous WASHC4 variant expanding the clinical spectrum of the disease and provide a phenotypical comparison with cases reported in the literature. Proteomic profiling of fibroblasts of the WASHC4-deficient patient revealed dysregulation of proteins relevant for the maintenance of the neuromuscular axis. Immunostaining on a muscle biopsy derived from the same patient confirmed dysregulation of proteins relevant for proper muscle function, thus highlighting an affliction of muscle cells upon loss of functional WASHC4. The results of histological and coherent anti-Stokes Raman scattering microscopic studies support the concept of a functional role of the WASHC4 protein in humans by altering protein processing and clearance. The proteomic analysis confirmed key molecular players in vitro and highlighted, for the first time, the involvement of skeletal muscle in patients. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland
    corecore