8 research outputs found
The Evaluation of Anatomic and Functional Changes in Unilateral Moderate Amblyopic Eyes Using Optical Coherence Tomography and Pupil Cycle Time
Purpose: To investigate whether macular anatomic structure and afferent visual system function differ among amblyopic eyes, non-amblyopic fellow eyes, and controls, using spectral-domain optical coherence tomography (SD-OCT), and pupil cycle time (PCT). Methods: This observational, cross-sectional study included 30 patients with unilateral amblyopia and 30 healthy subjects. Optical coherence tomography (OCT) and pupil cycle time (PCT) were used to evaluate patients with unilateral amblyopia and were compared with their non-amblyopic fellow eyes and age- and gender-matched healthy eyes (30 participants). The amblyopic eyes were separated into two groups: anisometropic amblyopia (n = 16) and strabismic amblyopia (n = 14). OCT maps were used to calculate central macular thickness (CMT), retinal nerve fiber layer thickness (RNFLT), and ganglion cell-inner plexiform layer (GC-IPL) thickness. Results: The average RNFLT, GC-IPL thickness, and CMT did not show any significant differences among the amblyopic eyes, non-amblyopic fellow eyes and controls (p > 0.05, Kruskal–Wallis test). Mean PCT was 773.57 ± 64 msn in strabismic eyes, 771.25 ± 58 msn in anisometropic eyes, 778.00 ± 72 msn in non-amblyopic fellow eyes, and 774.75 ± 69 msn in control eyes. The differences among the amblyopic eyes, its fellow and control eyes were not statistically significant (p > 0.05, Kruskal–Wallis test). Conclusions: In this study, we investigated morphological and functional differences among amblyopic eyes, non-amblyopic fellow eyes and controls by using SD-OCT and PCT. We did not find anatomical or functional changes in amblyopic eyes