432 research outputs found

    On the Vectorial Representation of Basic Colour Perception and Its Use in Colour-Measurement

    Get PDF

    Mechanism of the allosteric activation of the ClpP protease machinery by substrates and active-site inhibitors

    Get PDF
    18 pags., 6 figs., 1 tab. -- Open Access funded by Creative Commons Atribution Licence 4.0Coordinated conformational transitions in oligomeric enzymatic complexes modulate function in response to substrates and play a crucial role in enzyme inhibition and activation. Caseinolytic protease (ClpP) is a tetradecameric complex, which has emerged as a drug target against multiple pathogenic bacteria. Activation of different ClpPs by inhibitors has been independently reported from drug development efforts, but no rationale for inhibitor-induced activation has been hitherto proposed. Using an integrated approach that includes x-ray crystallography, solid- and solution-state nuclear magnetic resonance, molecular dynamics simulations, and isothermal titration calorimetry, we show that the proteasome inhibitor bortezomib binds to the ClpP active-site serine, mimicking a peptide substrate, and induces a concerted allosteric activation of the complex. The bortezomib-activated conformation also exhibits a higher affinity for its cognate unfoldase ClpX. We propose a universal allosteric mechanism, where substrate binding to a single subunit locks ClpP into an active conformation optimized for chaperone association and protein processive degradation.This work used the platforms of the Grenoble Instruct center (ISBG; UMS 3518 CNRS-CEA-UJF-EMBL) with support from INSTRUCT (“Innovative EM/NMR approach for the characterization of the drug target ClpP APPID: 301“), FRISBI (ANR-10-INSB-05-02), and GRAL (ANR-10-LABX-49-01) within the Grenoble Partnership for Structural Biology (PSB). We thank the ESRF for beamtime at ID30A and ID23-1. Funding: This work was supported by Spanish Ministerio de Economia y Competitividad (BFU2016-78232-P) and Instituto de Salud Carlos III co-funded by European Union (PI15/00663 and PI18/00349, ERDF/ ESF, “Investing in your future”). This work was financially supported by the European Research Council (ERC-Stg-2012-311318 to P.S.). J.F. is supported by an EMBO long-term post-doctoral fellowship (ALTF441-2017)

    relax: the analysis of biomolecular kinetics and thermodynamics using NMR relaxation dispersion data

    Get PDF
    International audienceNuclear Magnetic Resonance (NMR) is a powerful tool for observing the motion of biomolecules at the atomic level. One technique, the analysis of relaxation dispersion phenomenon, is highly suited for studying the kinetics and thermodynamics of biological processes. Built on top of the relax computational environment for NMR dynamics is a new dispersion analysis designed to be comprehensive, accurate and easy to use. The software supports more models, both numeric and analytic, than current solutions. An automated protocol, available for scripting and driving the GUI, is designed to simplify the analysis of dispersion data for NMR spectroscopists. Decreases in optimisation time are granted by parallelisation for running on computer clusters and by skipping an initial grid search by using parameters from one solution as the starting point for another – using analytic model results for the numeric models, taking advantage of model nesting, and using averaged non-clustered results for the clustered analysis. Availability: The software relax is written in Python with C modules and is released under the GPLv3+ licence. Source code and precompiled binaries for all major operating systems are available from http://www.nmr-relax.com

    relax: the analysis of biomolecular kinetics and thermodynamics using NMR relaxation dispersion data

    Get PDF
    Nuclear magnetic resonance (NMR) is a powerful tool for observing the motion of biomolecules at the atomic level. One technique, the analysis of relaxation dispersion phenomenon, is highly suited for studying the kinetics and thermodynamics of biological processes. Built on top of the relax computational environment for NMR dynamics is a new dispersion analysis designed to be comprehensive, accurate and easy-to-use. The software supports more models, both numeric and analytic, than current solutions. An automated protocol, available for scripting and driving the graphical user interface (GUI), is designed to simplify the analysis of dispersion data for NMR spectroscopists. Decreases in optimization time are granted by parallelization for running on computer clusters and by skipping an initial grid search by using parameters from one solution as the starting point for another —using analytic model results for the numeric models, taking advantage of model nesting, and using averaged non-clustered results for the clustered analysis. Availability and implementation: The software relax is written in Python with C modules and is released under the GPLv3+ license. Source code and precompiled binaries for all major operating systems are available from http://www.nmr-relax.com. Contact: [email protected]

    Characterization of Imaging Luminance Measurement Devices (ILMDs)

    Get PDF
    CIE 244:2021This document describes the elements, function and characterization of imaging luminance measuring devices (ILMDs). Furthermore, the calibration of ILMDs is described and some guidelines for their use are provided. Using ILMDs the projection of the luminance distribution of a scene can be recorded and made available for further evaluation. In addition to a simple documentation of measurements, the geometrical assignment of the image points into the object coordinate system often allows more complex calculations by combining luminance, directional and, if necessary, solid angle information (e.g. for glare evaluation). In addition to the flexible evaluation option, it is possible to acquire a large number of measured values quickly and, if necessary, even synchronously. Furthermore, the type of evaluation can also be coupled to the image content, i.e. the image areas to be evaluated can be determined in the image either by their position within the image or by their luminance value

    Molecular basis of FIR-mediated c-myc transcriptional control

    Get PDF
    The far upstream element (FUSE) regulatory system promotes a peak in the concentration of c-Myc during cell cycle. First, the FBP transcriptional activator binds to the FUSE DNA element upstream of the c-myc promoter. Then, FBP recruits its specific repressor (FIR), which acts as an on/off transcriptional switch. Here we describe the molecular basis of FIR recruitment, showing that the tandem RNA recognition motifs of FIR provide a platform for independent FUSE DNA and FBP protein binding and explaining the structural basis of the reversibility of the FBP-FIR interaction. We also show that the physical coupling between FBP and FIR is modulated by a flexible linker positioned sequentially to the recruiting element. Our data explain how the FUSE system precisely regulates c-myc transcription and suggest that a small change in FBP-FIR affinity leads to a substantial effect on c-Myc concentration.MRC Grant-in-aid U11757455

    Deuteration of proteins boosted by cell lysates: high-resolution amide and H<i>α</i> magic-angle-spinning (MAS) NMR without the reprotonation bottleneck

    Get PDF
    Amide-proton-detected magic-angle-spinning NMR of deuterated proteins has become a main technique in NMR-based structural biology. In standard deuteration protocols that rely on D2O-based culture media, non-exchangeable amide sites remain deuterated, making these sites unobservable. Here we demonstrate that proteins produced with a H2O-based culture medium doped with deuterated cell lysate allow scientists to overcome this “reprotonation bottleneck” while retaining a high level of deuteration (ca. 80 %) and narrow linewidths. We quantified coherence lifetimes of several proteins prepared with this labeling pattern over a range of magic-angle-spinning (MAS) frequencies (40–100 kHz). We demonstrate that under commonly used conditions (50–60 kHz MAS), the amide 1H linewidths with our labeling approach are comparable to those of perdeuterated proteins and better than those of protonated samples at 100 kHz. For three proteins in the 33–50 kDa size range, many previously unobserved amides become visible. We report how to prepare the deuterated cell lysate for our approach from fractions of perdeuterated cultures which are usually discarded, and we show that such media can be used identically to commercial media. The residual protonation of Hα sites allows for well-resolved Hα-detected spectra and Hα resonance assignment, exemplified by the de novo assignment of 168 Hα sites in a 39 kDa protein. The approach based on this H2O/cell-lysate deuteration and MAS frequencies compatible with 1.3 or 1.9 mm rotors presents a strong sensitivity benefit over 0.7 mm 100 kHz MAS experiments.</p

    Structural basis of NINJ1-mediated plasma membrane rupture in cell death

    Get PDF
    Eukaryotic cells can undergo different forms of programmed cell death, many of which culminate in plasma membrane rupture as the defining terminal event; 1-7; . Plasma membrane rupture was long thought to be driven by osmotic pressure, but it has recently been shown to be in many cases an active process, mediated by the protein ninjurin-1; 8; (NINJ1). Here we resolve the structure of NINJ1 and the mechanism by which it ruptures membranes. Super-resolution microscopy reveals that NINJ1 clusters into structurally diverse assemblies in the membranes of dying cells, in particular large, filamentous assemblies with branched morphology. A cryo-electron microscopy structure of NINJ1 filaments shows a tightly packed fence-like array of transmembrane α-helices. Filament directionality and stability is defined by two amphipathic α-helices that interlink adjacent filament subunits. The NINJ1 filament features a hydrophilic side and a hydrophobic side, and molecular dynamics simulations show that it can stably cap membrane edges. The function of the resulting supramolecular arrangement was validated by site-directed mutagenesis. Our data thus suggest that, during lytic cell death, the extracellular α-helices of NINJ1 insert into the plasma membrane to polymerize NINJ1 monomers into amphipathic filaments that rupture the plasma membrane. The membrane protein NINJ1 is therefore an interactive component of the eukaryotic cell membrane that functions as an in-built breaking point in response to activation of cell death
    corecore