5,892 research outputs found
Decoherence in a dynamical quantum phase transition
Motivated by the similarity between adiabatic quantum algorithms and quantum
phase transitions, we study the impact of decoherence on the sweep through a
second-order quantum phase transition for the prototypical example of the Ising
chain in a transverse field and compare it to the adiabatic version of Grovers
search algorithm, which displays a first order quantum phase transition. For
site-independent and site-dependent coupling strengths as well as different
operator couplings, the results show that (in contrast to first-order
transitions) the impact of decoherence caused by a weak coupling to a rather
general environment increases with system size (i.e., number of spins/qubits).
This might limit the scalability of the corresponding adiabatic quantum
algorithm.Comment: 14 pages, 9 figure
Quantum Equilibration under Constraints and Transport Balance
For open quantum systems coupled to a thermal bath at inverse temperature
, it is well known that under the Born-, Markov-, and secular
approximations the system density matrix will approach the thermal Gibbs state
with the bath inverse temperature . We generalize this to systems where
there exists a conserved quantity (e.g., the total particle number), where for
a bath characterized by inverse temperature and chemical potential
we find equilibration of both temperature and chemical potential. For
couplings to multiple baths held at different temperatures and different
chemical potentials, we identify a class of systems that equilibrates according
to a single hypothetical average but in general non-thermal bath, which may be
exploited to generate desired non-thermal states. Under special circumstances
the stationary state may be again be described by a unique Boltzmann factor.
These results are illustrated by several examples.Comment: 8 pages, 1 figure, leaner presentation, to appear in PR
Fighting Decoherence by Feedback-controlled Dissipation
Repeated closed-loop control operations acting as piecewise-constant
Liouville superoperators conditioned on the outcomes of regularly performed
measurements may effectively be described by a fixed-point iteration for the
density matrix. Even when all Liouville superoperators point to the completely
mixed state, feedback of the measurement result may lead to a pure state, which
can be interpreted as selective dampening of undesired states. Using a
microscopic model, we exemplify this for a single qubit, which can be purified
in an arbitrary single-qubit state by tuning the measurement direction and two
qubits that may be purified towards a Bell state by applying a special
continuous two-local measurement. The method does not require precise knowledge
of decoherence channels and works for large reservoir temperatures provided
measurement, processing, and control can be implemented in a continuous
fashion.Comment: to appear in PR
Identification of human papillomavirus DNA in cutaneous lesions of Cowden syndrome
Background: Cowden syndrome (CS) or multiple hamartoma syndrome is a cancer-associated genodermatosis inherited in an autosomal dominant pattern. One of the diagnostic criteria is facial papules which are felt to be trichilemmomas, benign hair follicle tumors, which some consider to be induced by human papillomavirus (HPV). Objective: To search for HPV in skin tumors, especially trichilemmomas, from patients with CS. Methods: Skin lesions from patients with CS were classified histologically. Each tumor was then analyzed for HPV DNA by polymerase chain reaction with different primer sets; positive amplicons were typed by direct sequencing. Results: Twenty-nine biopsies from 7 patients with CS were investigated. Only 2 of 29 tumors clinically suspected of being trichilemmomas were confirmed histologically. In addition, 3 sclerotic fibromas, also typical of CS, were found, as well as 1 sebaceous hyperplasia. The other 23 lesions showed histological features of HPV-induced tumors in various stages of development. HPV DNA was found in 19 of 29 cutaneous lesions. Tumors without any histological signs of HPV induction were negative for HPV DNA. Two tumors which were histologically classified as common warts contained HPV types 27 and 28. All the 17 other HPV types belong to the group of epidermodysplasia-verruciformis-associated types. Conclusions: The majority of cutaneous lesions in CS contain HPV DNA. They may have a variety of histological patterns. Trichilemmomas are not clinically distinctive and can be difficult to identify in CS patients. Copyright (C) 2003 S. Karger AG, Basel
Overview of the coordinated ground-based observations of Titan during the Huygens mission
Coordinated ground-based observations of Titan were performed around or during the Huygens atmospheric probe mission at Titan on 14 January 2005, connecting the momentary in situ observations by the probe with the synoptic coverage provided by continuing ground-based programs. These observations consisted of three different categories: (1) radio telescope tracking of the Huygens signal at 2040 MHz, (2) observations of the atmosphere and surface of Titan, and (3) attempts to observe radiation emitted during the Huygens Probe entry into Titan's atmosphere. The Probe radio signal was successfully acquired by a network of terrestrial telescopes, recovering a vertical profile of wind speed in Titan's atmosphere from 140 km altitude down to the surface. Ground-based observations brought new information on atmosphere and surface properties of the largest Saturnian moon. No positive detection of phenomena associated with the Probe entry was reported. This paper reviews all these measurements and highlights the achieved results. The ground-based observations, both radio and optical, are of fundamental importance for the interpretation of results from the Huygens mission
Empirical logic of finite automata: microstatements versus macrostatements
We compare the two approaches to the empirical logic of automata. The first,
called partition logic (logic of microstatements), refers to experiments on
individual automata. The second one, the logic of simulation (logic of
macrostatements), deals with ensembles of automata.Comment: late
Discovery of Temperate Latitude Clouds on Titan
Until now, all the clouds imaged in Titan's troposphere have been found at far southern latitudes (60°-90° south). The occurrence and location of these clouds is thought to be the result of convection driven by the maximum annual solar heating of Titan's surface, which occurs at summer solstice (2002 October) in this south polar region. We report the first observations of a new recurring type of tropospheric cloud feature, confined narrowly to ~40° south latitude, which cannot be explained by this simple insolation hypothesis. We propose two classes of formation scenario, one linked to surface geography and the other to seasonally evolving circulation, which will be easily distinguished with continued observations over the next few years
Equation of motion method for Full Counting Statistics: Steady state superradiance
For the multi-mode Dicke model in a transport setting that exhibits
collective boson transmissions, we construct the equation of motion for the
cumulant generating function. Approximating the exact system of equations at
the level of cumulant generating function and system operators at lowest order,
allows us to recover master equation results of the Full Counting Statistics
for certain parameter regimes at very low cost of computation. The
thermodynamic limit, that is not accessible with the master equation approach,
can be derived analytically for different approximations.Comment: 7 pages, 3 figures, revised version, accepted by PR
Dynamics of interacting transport qubits
We investigate the electronic transport through two parallel double quantum
dots coupled both capacitively and via a perpendicularly aligned charge qubit.
The presence of the qubit leads to a modification of the coherent tunnel
amplitudes of each double quantum dot. We study the influence of the qubit on
the electronic steady state currents through the system, the entanglement
between the transport double quantum dots, and the back action on the charge
qubit. We use a Born-Markov-Secular quantum master equation for the system. The
obtained currents show signatures of the qubit. The stationary qubit state may
be tuned and even rendered pure by applying suitable voltages. In the Coulomb
diamonds it is also possible to stabilize pure entangled states of the
transport double quantum dots
Preservation of Positivity by Dynamical Coarse-Graining
We compare different quantum Master equations for the time evolution of the
reduced density matrix. The widely applied secular approximation (rotating wave
approximation) applied in combination with the Born-Markov approximation
generates a Lindblad type master equation ensuring for completely positive and
stable evolution and is typically well applicable for optical baths. For phonon
baths however, the secular approximation is expected to be invalid. The usual
Markovian master equation does not generally preserve positivity of the density
matrix. As a solution we propose a coarse-graining approach with a dynamically
adapted coarse graining time scale. For some simple examples we demonstrate
that this preserves the accuracy of the integro-differential Born equation. For
large times we analytically show that the secular approximation master equation
is recovered. The method can in principle be extended to systems with a
dynamically changing system Hamiltonian, which is of special interest for
adiabatic quantum computation. We give some numerical examples for the
spin-boson model of cases where a spin system thermalizes rapidly, and other
examples where thermalization is not reached.Comment: 18 pages, 7 figures, reviewers suggestions included and tightened
presentation; accepted for publication in PR
- …