20 research outputs found

    Minority-centric meta-analyses of blood lipid levels identify novel loci in the Population Architecture using Genomics and Epidemiology (PAGE) study

    Get PDF
    Lipid levels are important markers for the development of cardio-metabolic diseases. Although hundreds of associated loci have been identified through genetic association studies, the contribution of genetic factors to variation in lipids is not fully understood, particularly in U.S. minority groups. We performed genome-wide association analyses for four lipid traits in over 45,000 ancestrally diverse participants from the Population Architecture using Genomics and Epidemiology (PAGE) Study, followed by a meta-analysis with several European ancestry studies. We identified nine novel lipid loci, five of which showed evidence of replication in independent studies. Furthermore, we discovered one novel gene in a PrediXcan analysis, minority-specific independent signals at eight previously reported loci, and potential functional variants at two known loci through fine-mapping. Systematic examination of known lipid loci revealed smaller effect estimates in African American and Hispanic ancestry populations than those in Europeans, and better performance of polygenic risk scores based on minority-specific effect estimates. Our findings provide new insight into the genetic architecture of lipid traits and highlight the importance of conducting genetic studies in diverse populations in the era of precision medicine

    Clustering of Gene Expression Profiles Applied to Marine Research

    No full text
    This work presents the results of applying two clustering techniques to gene expression data from the mussel Mytilus galloprovincialis. The objective of the study presented in this paper was to cluster the different genes involved in the experiment, in order to find those most closely related based on their expression patterns. A self-organising map (SOM) and the k-means algorithm were used, partitioning the input data into nine clusters. The resulting clusters were then analysed using Gene Ontology (GO) data, obtaining results that suggest that SOM clusters could be more homogeneous than those obtained by the k-means technique
    corecore