12,313 research outputs found
Treatment of failed articular cartilage reconstructive procedures of the knee: A systematic review
Background: Symptomatic articular cartilage lesions of the knee are common and are being treated surgically with increasing frequency. While many studies have reported outcomes following a variety of cartilage restoration procedures, few have investigated outcomes of revision surgery after a failed attempt at cartilage repair or reconstruction. Purpose: To investigate outcomes of revision cartilage restoration procedures for symptomatic articular cartilage lesions of the knee following a previously failed cartilage reconstructive procedure. Study Design: Systematic review; Level of evidence, 4. Methods: A literature search was performed by use of the PubMed, EMBASE, and MEDLINE/Ovid databases for relevant articles published between 1975 and 2017 that evaluated patients undergoing revision cartilage restoration procedure(s) and reported outcomes using validated outcome measures. For studies meeting inclusion criteria, relevant information was extracted. Results: Ten studies met the inclusion criteria. Lesions most commonly occurred in the medial femoral condyle (MFC) (52.8%), with marrow stimulation techniques (MST) the index procedure most frequently performed (70.7%). Three studies demonstrated inferior outcomes of autologous chondrocyte implantation (ACI) following a previous failed cartilage procedure compared with primary ACI. One study comparing osteochondral allograft (OCA) transplant following failed microfracture (MFX) with primary OCA transplant demonstrated similar clinical outcomes and graft survival at midterm follow-up. No studies reported outcomes following osteochondral autograft transfer (OAT) or newer techniques. Conclusion: This systematic review of the literature reporting outcomes following revision articular cartilage restoration procedures (most commonly involving the MFC) demonstrated a high proportion of patients who underwent prior MST. Evidence is sufficient to suggest that caution should be taken in performing ACI in the setting of prior MST, likely secondary to subchondral bone compromise. OCA appears to be a good revision treatment option even if the subchondral bone has been violated from prior surgery or fracture. </jats:sec
High harmonic generation from Bloch electrons in solids
We study the generation of high harmonic radiation by Bloch electrons in a
model transparent solid driven by a strong mid-infrared laser field. We solve
the single-electron time-dependent Schr\"odinger equation (TDSE) using a
velocity-gauge method [New J. Phys. 15, 013006 (2013)] that is numerically
stable as the laser intensity and number of energy bands are increased. The
resulting harmonic spectrum exhibits a primary plateau due to the coupling of
the valence band to the first conduction band, with a cutoff energy that scales
linearly with field strength and laser wavelength. We also find a weaker second
plateau due to coupling to higher-lying conduction bands, with a cutoff that is
also approximately linear in the field strength. To facilitate the analysis of
the time-frequency characteristics of the emitted harmonics, we also solve the
TDSE in a time-dependent basis set, the Houston states [Phys. Rev. B 33, 5494
(1986)], which allows us to separate inter-band and intra-band contributions to
the time-dependent current. We find that the inter-band and intra-band
contributions display very different time-frequency characteristics. We show
that solutions in these two bases are equivalent under an unitary
transformation but that, unlike the velocity gauge method, the Houston state
treatment is numerically unstable when more than a few low lying energy bands
are used
Attosecond Control of Ionization Dynamics
Attosecond pulses can be used to initiate and control electron dynamics on a
sub-femtosecond time scale. The first step in this process occurs when an atom
absorbs an ultraviolet photon leading to the formation of an attosecond
electron wave packet (EWP). Until now, attosecond pulses have been used to
create free EWPs in the continuum, where they quickly disperse. In this paper
we use a train of attosecond pulses, synchronized to an infrared (IR) laser
field, to create a series of EWPs that are below the ionization threshold in
helium. We show that the ionization probability then becomes a function of the
delay between the IR and attosecond fields. Calculations that reproduce the
experimental results demonstrate that this ionization control results from
interference between transiently bound EWPs created by different pulses in the
train. In this way, we are able to observe, for the first time, wave packet
interference in a strongly driven atomic system.Comment: 8 pages, 4 figure
Above threshold ionization by few-cycle spatially inhomogeneous fields
We present theoretical studies of above threshold ionization (ATI) produced
by spatially inhomogeneous fields. This kind of field appears as a result of
the illumination of plasmonic nanostructures and metal nanoparticles with a
short laser pulse. We use the time-dependent Schr\"odinger equation (TDSE) in
reduced dimensions to understand and characterize the ATI features in these
fields. It is demonstrated that the inhomogeneity of the laser electric field
plays an important role in the ATI process and it produces appreciable
modifications to the energy-resolved photoelectron spectra. In fact, our
numerical simulations reveal that high energy electrons can be generated.
Specifically, using a linear approximation for the spatial dependence of the
enhanced plasmonic field and with a near infrared laser with intensities in the
mid- 10^{14} W/cm^{2} range, we show it is possible to drive electrons with
energies in the near-keV regime. Furthermore, we study how the carrier envelope
phase influences the emission of ATI photoelectrons for few-cycle pulses. Our
quantum mechanical calculations are supported by their classical counterparts
Effective Gap Equation for the Inhomogeneous LOFF Superconductive Phase
We present an approximate gap equation for different crystalline structures
of the LOFF phase of high density QCD at T=0. This equation is derived by using
an effective condensate term obtained by averaging the inhomogeneous condensate
over distances of the order of the crystal lattice size. The approximation is
expected to work better far off any second order phase transition. As a
function of the difference of the chemical potentials of the up and down
quarks, , we get that the octahedron is energetically favored from
to , where is the gap for
the homogeneous phase, while in the range the face
centered cube prevails. At a first order phase
transition to the normal phase occurs.Comment: 11 pages, 5 figure
Alternativity and reciprocity in the Cayley-Dickson algebra
We calculate the eigenvalue \rho of the multiplication mapping R on the
Cayley-Dickson algebra A_n. If the element in A_n is composed of a pair of
alternative elements in A_{n-1}, half the eigenvectors of R in A_n are still
eigenvectors in the subspace which is isomorphic to A_{n-1}.
The invariant under the reciprocal transformation A_n \times A_{n} \ni (x,y)
-> (-y,x) plays a fundamental role in simplifying the functional form of \rho.
If some physical field can be identified with the eigenspace of R, with an
injective map from the field to a scalar quantity (such as a mass) m, then
there is a one-to-one map \pi: m \mapsto \rho. As an example, the electro-weak
gauge field can be regarded as the eigenspace of R, where \pi implies that the
W-boson mass is less than the Z-boson mass, as in the standard model.Comment: To be published in J. Phys. A: Mathematical and Genera
Phase Measurement of Resonant Two-Photon Ionization in Helium
We study resonant two-color two-photon ionization of Helium via the 1s3p 1P1
state. The first color is the 15th harmonic of a tunable titanium sapphire
laser, while the second color is the fundamental laser radiation. Our method
uses phase-locked high-order harmonics to determine the {\it phase} of the
two-photon process by interferometry. The measurement of the two-photon
ionization phase variation as a function of detuning from the resonance and
intensity of the dressing field allows us to determine the intensity dependence
of the transition energy.Comment: 4 pages, 5 figures, under consideratio
Transient absorption and reshaping of ultrafast XUV light by laser-dressed helium
We present a theoretical study of transient absorption and reshaping of
extreme ultraviolet (XUV) pulses by helium atoms dressed with a moderately
strong infrared (IR) laser field. We formulate the atomic response using both
the frequency-dependent absorption cross section and a time-frequency approach
based on the time-dependent dipole induced by the light fields. The latter
approach can be used in cases when an ultrafast dressing pulse induces
transient effects, and/or when the atom exchanges energy with multiple
frequency components of the XUV field. We first characterize the dressed atom
response by calculating the frequency-dependent absorption cross section for
XUV energies between 20 and 24 eV for several dressing wavelengths between 400
and 2000 nm and intensities up to 10^12 W/cm^2. We find that for dressing
wavelengths near 1600 nm, there is an Autler-Townes splitting of the 1s ---> 2p
transition that can potentially lead to transparency for absorption of XUV
light tuned to this transition. We study the effect of this XUV transparency in
a macroscopic helium gas by incorporating the time-frequency approach into a
solution of the coupled Maxwell-Schr\"odinger equations. We find rich temporal
reshaping dynamics when a 61 fs XUV pulse resonant with the 1s ---> 2p
transition propagates through a helium gas dressed by an 11 fs, 1600 nm laser
pulse.Comment: 13 pages, 8 figures, 1 table, RevTeX4, revise
- …