11,965 research outputs found

    Studies of circadian cycles in human subjects during prolonged isolation in a constant environment using 8-channel telemetry systems Memorandum report no. 66-4

    Get PDF
    Circadian cycles in human subjects during prolonged isolation in constant environment using eight channel telemetry system

    Studies of circadian cycles in human subjects during prolonged isolation in a constant environment using eight-channel telemetry systems

    Get PDF
    Telemetry monitored physiological data of human circadian cycles during prolonged isolatio

    Vacuum fluctuations and the thermodynamics of chiral models

    Full text link
    We consider the thermodynamics of chiral models in the mean-field approximation and discuss the relevance of the (frequently omitted) fermion vacuum loop. Within the chiral quark-meson model and its Polyakov loop extended version, we show that the fermion vacuum fluctuations can change the order of the phase transition in the chiral limit and strongly influence physical observables. We compute the temperature-dependent effective potential and baryon number susceptibilities in these models, with and without the vacuum term, and explore the cutoff and the pion mass dependence of the susceptibilities. Finally, in the renormalized model the divergent vacuum contribution is removed using the dimensional regularization.Comment: 9 pages, 5 figure

    Gamma Ray Burst Host Galaxies Have `Normal' Luminosities

    Get PDF
    The galactic environment of Gamma Ray Bursts can provide good evidence about the nature of the progenitor system, with two old arguments implying that the burst host galaxies are significantly subluminous. New data and new analysis have now reversed this picture: (A) Even though the first two known host galaxies are indeed greatly subluminous, the next eight hosts have absolute magnitudes typical for a population of field galaxies. A detailed analysis of the 16 known hosts (ten with red shifts) shows them to be consistent with a Schechter luminosity function with R∗=−21.8±1.0R^{*} = -21.8 \pm 1.0 as expected for normal galaxies. (B) Bright bursts from the Interplanetary Network are typically 18 times brighter than the faint bursts with red shifts, however the bright bursts do not have galaxies inside their error boxes to limits deeper than expected based on the luminosities for the two samples being identical. A new solution to this dilemma is that a broad burst luminosity function along with a burst number density varying as the star formation rate will require the average luminosity of the bright sample (>>6×1058ph⋅s−16 \times 10^{58} ph \cdot s^{-1} or >>1.7×1052⋅erg⋅s−11.7 \times 10^{52} \cdot erg \cdot s^{-1}) to be much greater than the average luminosity of the faint sample (∼1058ph⋅s−1\sim 10^{58} ph \cdot s^{-1} or ∼3×1051erg⋅s−1\sim 3 \times 10^{51} erg \cdot s^{-1}). This places the bright bursts at distances for which host galaxies with a normal luminosity will not violate the observed limits. In conclusion, all current evidence points to GRB host galaxies being normal in luminosity.Comment: 18 pages, 3 figures, Submitted to ApJLet

    Individual Values and SME Environmental Engagement

    Get PDF
    We study the values on which managers of small and medium-sized enterprises draw when constructing their personal and organizational-level engagement with environmental issues, particularly climate change. Values play an important mediating role in business environmental engagement but relatively little research has been conducted on individual values in smaller organizations. Using the Schwartz Value System (SVS) as a framework for a qualitative analysis, we identify four ‘ideal-types’ of SME managers and provide rich descriptions of the ways in which values shape their constructions of environmental engagement. In contrast to previous research, which is framed around a binary divide between self-enhancing and self-transcending values, our typology distinguishes between individuals drawing primarily on Power or on Achievement values, and indicates how a combination of Achievement and Benevolence values is particularly significant in shaping environmental engagement. This demonstrates the theoretical usefulness of focusing on a complete range of values. Implications for policy and practice are discussed

    Near-infrared studies of the 2010 outburst of the recurrent nova U Scorpii

    Get PDF
    We present near-infrared (near-IR) observations of the 2010 outburst of U Sco. JHK photometry is presented on 10 consecutive days starting from 0.59 d after outburst. Such photometry can gainfully be integrated into a larger data base of other multiwavelength data which aim to comprehensively study the evolution of U Sco. Early near-IR spectra, starting from 0.56 d after outburst, are presented and their general characteristics discussed. Early in the eruption, we see very broad wings in several spectral lines, with tails extending up to ∼10 000 km s−1 along the line of sight; it is unexpected to have a nova with ejection velocities equal to those usually thought to be exclusive to supernovae. From recombination analysis, we estimate an upper limit of [inline image] for the ejected mass

    From X-ray dips to eclipse: Witnessing disk reformation in the recurrent nova USco

    Get PDF
    The 10th recorded outburst of the recurrent eclipsing nova USco was observed simultaneously in X-ray, UV, and optical by XMM-Newton on days 22.9 and 34.9 after outburst. Two full passages of the companion in front of the nova ejecta were observed, witnessing the reformation of the accretion disk. On day 22.9, we observed smooth eclipses in UV and optical but deep dips in the X-ray light curve which disappeared by day 34.9, then yielding clean eclipses in all bands. X-ray dips can be caused by clumpy absorbing material that intersects the line of sight while moving along highly elliptical trajectories. Cold material from the companion could explain the absence of dips in UV and optical light. The disappearance of X-ray dips before day 34.9 implies significant progress in the formation of the disk. The X-ray spectra contain photospheric continuum emission plus strong emission lines, but no clear absorption lines. Both continuum and emission lines in the X-ray spectra indicate a temperature increase from day 22.9 to day 34.9. We find clear evidence in the spectra and light curves for Thompson scattering of the photospheric emission from the white dwarf. Photospheric absorption lines can be smeared out during scattering in a plasma of fast electrons. We also find spectral signatures of resonant line scattering that lead to the observation of the strong emission lines. Their dominance could be a general phenomenon in high-inclination systems such as Cal87.Comment: Submitted to ApJ. 16 pages, 16 figure

    Analysis of electron-positron momentum spectra of metallic alloys as supported by first-principles calculations

    Get PDF
    Electron-positron momentum distributions measured by the coincidence Doppler broadening method can be used in the chemical analysis of the annihilation environment, typically a vacancy-impurity complex in a solid. In the present work, we study possibilities for a quantitative analysis, i.e., for distinguishing the average numbers of different atomic species around the defect. First-principles electronic structure calculations self-consistently determining electron and positron densities and ion positions are performed for vacancy-solute complexes in Al-Cu, Al-Mg-Cu, and Al-Mg-Cu-Ag alloys. The ensuing simulated coincidence Doppler broadening spectra are compared with measured ones for defect identification. A linear fitting procedure, which uses the spectra for positrons trapped at vacancies in pure constituent metals as components, has previously been employed to find the relative percentages of different atomic species around the vacancy [A. Somoza et al. Phys. Rev. B 65, 094107 (2002)]. We test the reliability of the procedure by the help of first-principles results for vacancy-solute complexes and vacancies in constituent metals.Comment: Submitted to Physical Review B on September 19 2006. Revised version submitted on November 8 2006. Published on February 14 200

    Mapping the phase diagram of strongly interacting matter

    Full text link
    We employ a conformal mapping to explore the thermodynamics of strongly interacting matter at finite values of the baryon chemical potential μ\mu. This method allows us to identify the singularity corresponding to the critical point of a second-order phase transition at finite μ\mu, given information only at μ=0\mu=0. The scheme is potentially useful for computing thermodynamic properties of strongly interacting hot and dense matter in lattice gauge theory. The technique is illustrated by an application to a chiral effective model.Comment: 5 pages, 3 figures; published versio
    • …
    corecore