26 research outputs found

    Assessing the performance of statistical classifiers to discriminate fish stocks using Fourier analysis of otolith shape

    Get PDF
    The assignment of individual fish to its stock of origin is important for reliable stock assessment and fisheries management. Otolith shape is commonly used as the marker of distinct stocks in discrimination studies. Our literature review showed that the application and comparison of alternative statistical classifiers to discriminate fish stocks based on otolith shape is limited. Therefore, we compared the performance of two traditional and four machine learning classifiers based on Fourier analysis of otolith shape using selected stocks of Atlantic cod (Gadus morhua) in the southern Baltic and Atlantic herring (Clupea harengus) in the western Norwegian Sea, Skagerrak and the southern Baltic Sea. Our results showed that the stocks can be successfully discriminated based on their otolith shapes. We observed significant differences in the accuracy obtained by the tested classifiers. For both species, support vector machines (SVM) resulted in the highest classification accuracy. These findings suggest that modern machine learning algorithms, like SVM, can help to improve the accuracy of fish stock discrimination systems based on the otolith shape.Assessing the performance of statistical classifiers to discriminate fish stocks using Fourier analysis of otolith shapesubmittedVersio

    Assessing SNP-markers to study population mixing and ecological adaptation in Baltic cod

    Get PDF
    Atlantic cod (Gadus morhua) is a species of great ecological and economical importance in the Baltic Sea. Here, two genetically differentiated stocks, the western and the eastern Baltic cod, display substantial mechanical mixing, hampering our understanding of cod ecology and impeding stock assessments and management. Based on whole-genome re-sequencing data from reference samples obtained from the study area, we designed two different panels of Single Nucleotide Polymorphisms markers (SNPs), which take into account the exceptional genome architecture of cod. A minimum panel of 20 diagnostic SNPs and an extended panel (20 diagnostic and 18 biologically informative SNPs, 38 in total) were developed and validated to distinguish unambiguously between the western and the eastern Baltic cod stocks and to enable studies of local adaptation to the specific environment in the Baltic Sea, respectively. We tested both panels on cod sampled from the southern Baltic Sea (n = 603) caught in 2015 and 2016. Genotyping results showed that catches from the mixing zone in the Arkona Sea, were composed of similar proportions of individuals of the western and the eastern stock. Catches from adjacent areas to the east, the Bornholm Basin and Gdańsk Deep, were exclusively composed of eastern Baltic cod, whereas catches from adjacent western areas (Belt Sea and Öresund) were composed of western Baltic cod. Interestingly, the two Baltic cod stocks showed strong genetic differences at loci associated with life-history trait candidate genes, highlighting the species’ potential for ecological adaptation even at small geographical scales. The minimum and the extended panel of SNP markers presented in this study provide powerful tools for future applications in research and fisheries management to further illuminate the mixing dynamics of cod in the Baltic Sea and to better understand Baltic cod ecology

    Seasonal variation in parasite infection patterns of marine fish species from the Northern Wadden Sea in relation to inter annual temperature fluctuations

    Get PDF
    Marine environmental conditions are naturally changing throughout the year, affecting life cycles of hosts aswell as parasites. In particular,water temperature is positively correlatedwith the development ofmany parasites and pathogenic bacteria, increasing the risk of infection and diseases during summer. Interannual temperature fluctuations are likely to alter host?parasite interactions, which may result in profound impacts on sensitive ecosystems. In this context we investigated the parasite and bacterial Vibrionaceae communities of four common small fish species (three-spined stickleback Gasterosteus aculeatus, Atlantic herring Clupea harengus, European sprat Sprattus sprattus and lesser sand eel Ammodytes tobianus) in the Northern Wadden Sea over a period of two years. Overall, we found significantly increased relative diversities of infectious species at higher temperature differentials. On the taxon-specific level some macroparasite species (trematodes, nematodes) showed a shift in infection peaks that followed the water temperatures of preceding months, whereas other parasite groups showed no effects of temperature differentials on infection parameters. Our results show that even subtle changes in seasonal temperatures may shift and modify the phenology of parasites as well as opportunistic pathogens that can have far reaching consequences for sensitive ecosystems

    Impact of thermal stress on evolutionary trajectories of pathogen resistance in three-spined stickleback (Gasterosteus aculeatus)

    Get PDF
    Background: Pathogens are a major regulatory force for host populations, especially under stressful conditions. Elevated temperatures may enhance the development of pathogens, increase the number of transmission stages, and can negatively influence host susceptibility depending on host thermal tolerance. As a net result, this can lead to a higher prevalence of epidemics during summer months. These conditions also apply to marine ecosystems, where possible ecological impacts and the population-specific potential for evolutionary responses to changing environments and increasing disease prevalence are, however, less known. Therefore, we investigated the influence of thermal stress on the evolutionary trajectories of disease resistance in three marine populations of three-spined sticklebacks Gasterosteus aculeatus by combining the effects of elevated temperature and infection with a bacterial strain of Vibrio sp. using a common garden experiment. Results: We found that thermal stress had an impact on fish weight and especially on survival after infection after only short periods of thermal acclimation. Environmental stress reduced genetic differentiation (QST) between populations by releasing cryptic within-population variation. While life history traits displayed positive genetic correlations across environments with relatively weak genotype by environment interactions (GxE), environmental stress led to negative genetic correlations across environments in pathogen resistance. This reversal of genetic effects governing resistance is probably attributable to changing environment-dependent virulence mechanisms of the pathogen interacting differently with host genotypes, i.e. GPathogenxGHostxE or (GPathogenxE)x(GHostxE) interactions, rather than to pure host genetic effects, i.e. GHostxE interactions. Conclusion: To cope with climatic changes and the associated increase in pathogen virulence, host species require wide thermal tolerances and pathogen-resistant genotypes. The higher resistance we found for some families at elevated temperatures showed that there is evolutionary potential for resistance to Vibrio sp. in both thermal environments. The negative genetic correlation of pathogen resistance between thermal environments, on the other hand, indicates that adaptation to current conditions can be a weak predictor for performance in changing environments. The observed feedback on selective gradients exerted on life history traits may exacerbate this effect, as it can also modify the response to selection for other vital components of fitness

    Assessing the performance of statistical classifiers to discriminate fish stocks using Fourier analysis of otolith shape

    No full text
    The assignment of individual fish to its stock of origin is important for reliable stock assessment and fisheries management. Otolith shape is commonly used as the marker of distinct stocks in discrimination studies. Our literature review showed that the application and comparison of alternative statistical classifiers to discriminate fish stocks based on otolith shape is limited. Therefore, we compared the performance of two traditional and four machine learning classifiers based on Fourier analysis of otolith shape using selected stocks of Atlantic cod (Gadus morhua) in the southern Baltic and Atlantic herring (Clupea harengus) in the western Norwegian Sea, Skagerrak and the southern Baltic Sea. Our results showed that the stocks can be successfully discriminated based on their otolith shapes. We observed significant differences in the accuracy obtained by the tested classifiers. For both species, support vector machines (SVM) resulted in the highest classification accuracy. These findings suggest that modern machine learning algorithms, like SVM, can help to improve the accuracy of fish stock discrimination systems based on the otolith shape

    Assessing the performance of statistical classifiers to discriminate fish stocks using Fourier analysis of otolith shape

    No full text
    The assignment of individual fish to its stock of origin is important for reliable stock assessment and fisheries management. Otolith shape is commonly used as the marker of distinct stocks in discrimination studies. Our literature review showed that the application and comparison of alternative statistical classifiers to discriminate fish stocks based on otolith shape is limited. Therefore, we compared the performance of two traditional and four machine learning classifiers based on Fourier analysis of otolith shape using selected stocks of Atlantic cod (Gadus morhua) in the southern Baltic and Atlantic herring (Clupea harengus) in the western Norwegian Sea, Skagerrak and the southern Baltic Sea. Our results showed that the stocks can be successfully discriminated based on their otolith shapes. We observed significant differences in the accuracy obtained by the tested classifiers. For both species, support vector machines (SVM) resulted in the highest classification accuracy. These findings suggest that modern machine learning algorithms, like SVM, can help to improve the accuracy of fish stock discrimination systems based on the otolith shape

    Assessing the performance of statistical classifiers to discriminate fish stocks using Fourier analysis of otolith shape

    Get PDF
    The assignment of individual fish to its stock of origin is important for reliable stock assessment and fisheries management. Otolith shape is commonly used as the marker of distinct stocks in discrimination studies. Our literature review showed that the application and comparison of alternative statistical classifiers to discriminate fish stocks based on otolith shape is limited. Therefore, we compared the performance of two traditional and four machine learning classifiers based on Fourier analysis of otolith shape using selected stocks of Atlantic cod (Gadus morhua) in the southern Baltic and Atlantic herring (Clupea harengus) in the western Norwegian Sea, Skagerrak and the southern Baltic Sea. Our results showed that the stocks can be successfully discriminated based on their otolith shapes. We observed significant differences in the accuracy obtained by the tested classifiers. For both species, support vector machines (SVM) resulted in the highest classification accuracy. These findings suggest that modern machine learning algorithms, like SVM, can help to improve the accuracy of fish stock discrimination systems based on the otolith shape

    Within- and transgenerational effects of ocean acidification on life history of marine three-spined stickleback (Gasterosteus aculeatus)

    No full text
    Some studies have demonstrated that elevated CO2 concentrations in ocean waters negatively impact metabolism and development of marine fish. Particularly, early developmental stages are probably more susceptible to ocean acidification due to insufficient regulations of their acid-base balance. Transgenerational acclimation can be an important mechanism to mediate impacts of increased CO2 on marine species, yet very little is known about the potential of parental effects in teleosts. Therefore, transgenerational effects were investigated on life history in juvenile three-spined sticklebacks Gasterosteus aculeatus by acclimating parents (collected in April 2012, 55A degrees 03'N, 8A degrees 44'E) and offspring to ambient (similar to 400 A mu atm) and elevated (similar to 1,000 A mu atm) CO2 levels and measured parental fecundity as well as offspring survival, growth and otolith characteristics. Exposure to elevated CO2 concentrations led to an increase in clutch size in adults as well as increased juvenile survival and growth rates between 60 and 90 days post-hatch and enlarged otolith areas compared with fish from ambient CO2 concentrations. Moreover, transgenerational effects were observed in reduced survival and body size 30 days post-hatch as well as in enlarged otoliths at the end of the experiment, when fathers or both parents were acclimated to the high-CO2 environment. These results may suggest that elevated CO2 concentrations had rather positive effects on life-history traits of three-spined sticklebacks, but that parental acclimation can modify these effects without improving offspring fitness. Although the mechanistic basis of such transgenerational acclimation remains unclear, selective gradients within generations seem to determine the direction of transgenerational effects
    corecore