1,312 research outputs found

    Designing optimal low-thrust gravity-assist trajectories using space-pruning and a multi-objective approach

    Get PDF
    A multi-objective problem is addressed consisting of finding optimal low-thrust gravity-assist trajectories for interplanetary and orbital transfers. For this, recently developed pruning techniques for incremental search space reduction - which will be extended for the current situation - in combination with subdivision techniques for the approximation of the entire solution set, the so-called Pareto set, are used. Subdivision techniques are particularly promising for the numerical treatment of these multi-objective design problems since they are characterized (amongst others) by highly disconnected feasible domains, which can easily be handled by these set oriented methods. The complexity of the novel pruning techniques is analysed, and finally the usefulness of the novel approach is demonstrated by showing some numerical results for two realistic cases

    A new hybrid evolutionary algorithm for the treatment of equality constrained MOPs

    Get PDF
    Multi-objective evolutionary algorithms are widely used by researchers and practitioners to solve multi-objective optimization problems (MOPs), since they require minimal assumptions and are capable of computing a finite size approximation of the entire solution set in one run of the algorithm. So far, however, the adequate treatment of equality constraints has played a minor role. Equality constraints are particular since they typically reduce the dimension of the search space, which causes problems for stochastic search algorithms such as evolutionary strategies. In this paper, we show that multi-objective evolutionary algorithms hybridized with continuation-like techniques lead to fast and reliable numerical solvers. For this, we first propose three new problems with different characteristics that are indeed hard to solve by evolutionary algorithms. Next, we develop a variant of NSGA-II with a continuation method. We present numerical results on several equality-constrained MOPs to show that the resulting method is highly competitive to state-of-the-art evolutionary algorithms.Peer ReviewedPostprint (published version

    A Descent Method for Equality and Inequality Constrained Multiobjective Optimization Problems

    Full text link
    In this article we propose a descent method for equality and inequality constrained multiobjective optimization problems (MOPs) which generalizes the steepest descent method for unconstrained MOPs by Fliege and Svaiter to constrained problems by using two active set strategies. Under some regularity assumptions on the problem, we show that accumulation points of our descent method satisfy a necessary condition for local Pareto optimality. Finally, we show the typical behavior of our method in a numerical example

    Structure and properties of porous ceramics obtained from aluminum hydroxide

    Get PDF
    In this paper the study of porous ceramics obtained from aluminum hydroxide with gibbsite modification is presented. The dependence of porosity and mechanical characteristics of the material sintered at different temperatures was studied. It was shown that compressive strength of alumina ceramics increases by 40 times with decreasing the pore volume from 65 to 15%. It was shown that aluminum hydroxide may be used for pore formation and pore volume in the sintered ceramics can be controlled by varying the aluminum hydroxide concentration and sintering temperature. Based on these results one can conclude that the obtained structure is very close to inorganic bone matrix and can be used as promising material for bone implants production

    An approach for the local exploration of discrete many objective optimization problems

    Get PDF
    International audienceMulti-objective optimization problems with more than three objectives, which are also termed as many objective optimization problems , play an important role in the decision making process. For such problems, it is computationally expensive or even intractable to approximate the entire set of optimal solutions. An alternative is to compute a subset of optimal solutions based on the preferences of the decision maker. Commonly, interactive methods from the literature consider the user preferences at every iteration by means of weight vectors or reference points. Besides the fact that mathematical programming techniques only produce one solution at each iteration, they generally require first or second derivative information, that limits its applicability to certain problems. The approach proposed in this paper allows to steer the search into any direction in the objective space for optimization problems of discrete nature. This provides a more intuitive way to set the preferences, which represents a useful tool to explore the regions of interest of the decision maker. Numerical results on multi-objective multi-dimensional knapsack problem instances show the interest of the proposed approach

    Computing the set of Epsilon-efficient solutions in multiobjective space mission design

    Get PDF
    In this work, we consider multiobjective space mission design problems. We will start from the need, from a practical point of view, to consider in addition to the (Pareto) optimal solutions also nearly optimal ones. In fact, extending the set of solutions for a given mission to those nearly optimal significantly increases the number of options for the decision maker and gives a measure of the size of the launch windows corresponding to each optimal solution, i.e., a measure of its robustness. Whereas the possible loss of such approximate solutions compared to optimal—and possibly even ‘better’—ones is dispensable. For this, we will examine several typical problems in space trajectory design—a biimpulsive transfer from the Earth to the asteroid Apophis and two low-thrust multigravity assist transfers—and demonstrate the possible benefit of the novel approach. Further, we will present a multiobjective evolutionary algorithm which is designed for this purpose

    A multi-objective optimal PID control for a nonlinear system with time delay

    Get PDF
    It is generally difficult to design feedback controls of nonlinear systems with time delay to meet time domain specifications such as rise time, overshoot, and tracking error. Furthermore, these time domain specifications tend to be conflicting to each other to make the control design even more challenging. This paper presents a cell mapping method for multi-objective optimal feedback control design in time domain for a nonlinear Duffing system with time delay. We first review the multi-objective optimization problem and its formulation for control design. We then introduce the cell mapping method and a hybrid algorithm for global optimal solutions. Numerical simulations of the PID control are presented to show the features of the multi-objective optimal design

    Updating the EU Internal Market Concept

    Get PDF
    The study analyses the EU Internal market from a dynamic and a contextual perspective, taking into account, not just the normative changes brought by the intense legislative and judicial activity in this area, but also the important economic and technological transformations that have largely altered the structure of the global economy in the last two to three decades. These could, in my view, challenge the first principles upon which the EU economic integration process and, in particular the “single market” idea, is based. This “updating” of the Internal market project is essential if one is to critically reflect on the role and the specificity of the EU integration process, in the context of the broader globalization movement. The first part of the paper introduces the “neo-functionalist” perspective, which has largely influenced the EU economic integration process, from its incipiency, and explores its theoretical linkages with trade theory (the law of one price), thus presenting the fundamental tenets of positive EU Internal market law. The second part delves into the subsequent mutation of the economic integration ideal towards the more modular and scalar concept of “regulatory convergence”. Opening the black box of economic integration will lead us to analyse its transformation, as a result of a paradigm shift currently occurring in the organization of the global process of economic production, with the development of global value chains, and the important role of technology, in particular the Internet, in promoting economic integration not through law, but through code. The study predicts that addressing more systematically the effect of both private and public obstacles to trade should take centre-stage if one is to opt for a more holistic and dynamic perspective in analysing the process of economic integration. A more extensive intervention of the competition law tool and other regulatory initiatives against private restrictions to trade is therefore to be expected in the future, these areas of law taking a more prevalent part in the EU Internal market law compass. The study discusses in some detail the recent legislative and jurisprudential developments with regard to geo-blocking and geo-filtering practices. The last part of the study provides some concluding thoughts on the need for the EU Internal market concept to be updated and raises some questions with regard to its ontology in the context of a globalized economy

    Amyloid pathology but not APOE ε4 status is permissive for tau-related hippocampal dysfunction

    Get PDF
    We investigated whether the impact of tau-pathology on memory performance and on hippocampal/medial temporal memory function in non-demented individuals depends on the presence of amyloid pathology, irrespective of diagnostic clinical stage. We conducted a cross-sectional analysis of the observational, multicentric DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE). Two hundred and thirty-five participants completed task functional MRI and provided CSF (92 cognitively unimpaired, 100 experiencing subjective cognitive decline and 43 with mild cognitive impairment). Presence (A+) and absence (A-) of amyloid pathology was defined by CSF amyloid-β42 (Aβ42) levels. Free recall performance in the Free and Cued Selective Reminding Test, scene recognition memory accuracy and hippocampal/medial temporal functional MRI novelty responses to scene images were related to CSF total-tau and phospho-tau levels separately for A+ and A- individuals. We found that total-tau and phospho-tau levels were negatively associated with memory performance in both tasks and with novelty responses in the hippocampus and amygdala, in interaction with Aβ42 levels. Subgroup analyses showed that these relationships were only present in A+ and remained stable when very high levels of tau (>700 pg/ml) and phospho-tau (>100 pg/ml) were excluded. These relationships were significant with diagnosis, age, education, sex, assessment site and Aβ42 levels as covariates. They also remained significant after propensity score based matching of phospho-tau levels across A+ and A- groups. After classifying this matched sample for phospho-tau pathology (T-/T+), individuals with A+/T+ were significantly more memory-impaired than A-/T+ despite the fact that both groups had the same amount of phospho-tau pathology. ApoE status (presence of the E4 allele), a known genetic risk factor for Alzheimer's disease, did not mediate the relationship between tau pathology and hippocampal function and memory performance. Thus, our data show that the presence of amyloid pathology is associated with a linear relationship between tau pathology, hippocampal dysfunction and memory impairment, although the actual severity of amyloid pathology is uncorrelated. Our data therefore indicate that the presence of amyloid pathology provides a permissive state for tau-related hippocampal dysfunction and hippocampus-dependent recognition and recall impairment. This raises the possibility that in the predementia stage of Alzheimer's disease, removing the negative impact of amyloid pathology could improve memory and hippocampal function even if the amount of tau-pathology in CSF is not changed, whereas reducing increased CSF tau-pathology in amyloid-negative individuals may not proportionally improve memory function
    corecore