14,227 research outputs found
The endoplasmic reticulum in plant immunity and cell death
The endoplasmic reticulum (ER) is a highly dynamic organelle in eukaryotic cells and a major production site of proteins destined for vacuoles, the plasma membrane, or apoplast in plants. At the ER, these secreted proteins undergo multiple processing steps, which are supervised and conducted by the ER quality control system. Notably, processing of secreted proteins can considerably elevate under stress conditions and exceed ER folding capacities. The resulting accumulation of unfolded proteins is defined as ER stress. The efficiency of cells to re-establish proper ER function is crucial for stress adaptation. Besides delivering proteins directly antagonizing and resolving stress conditions, the ER monitors synthesis of immune receptors. This indicates the significance of the ER for the establishment and function of the plant immune system. Recent studies point out the fragility of the entire system and highlight the ER as initiator of programed cell death (PCD) in plants as was reported for vertebrates. This review summarizes current knowledge on the impact of the ER on immune and PCD signaling. Understanding the integration of stress signals by the ER bears a considerable potential to optimize development and to enhance stress resistance of plants
From Trapped Atoms to Liberated Quarks
We discuss some aspects of cold atomic gases in the unitarity limit that are
of interest in connection with the physics of dense hadronic matter. We
consider, in particular, the equation of state at zero temperature, the
magnitude of the pairing gap, and the phase diagram at non-zero polarization.Comment: 13 pages, 5 figures; to appear in the proceedings of the
International Symposium on Heavy Ion Physics 2006, Frankfurt, Germany;
International Journal of Modern Physics E, in pres
Lattice QCD study of the Boer-Mulders effect in a pion
The three-dimensional momenta of quarks inside a hadron are encoded in
transverse momentum-dependent parton distribution functions (TMDs). This work
presents an exploratory lattice QCD study of a TMD observable in the pion
describing the Boer-Mulders effect, which is related to polarized quark
transverse momentum in an unpolarized hadron. Particular emphasis is placed on
the behavior as a function of a Collins-Soper evolution parameter quantifying
the relative rapidity of the struck quark and the initial hadron, e.g., in a
semi-inclusive deep inelastic scattering (SIDIS) process. The lattice
calculation, performed at the pion mass m_pi = 518 MeV, utilizes a definition
of TMDs via hadronic matrix elements of a quark bilocal operator with a
staple-shaped gauge connection; in this context, the evolution parameter is
related to the staple direction. By parametrizing the aforementioned matrix
elements in terms of invariant amplitudes, the problem can be cast in a Lorentz
frame suited for the lattice calculation. In contrast to an earlier nucleon
study, due to the lower mass of the pion, the calculated data enable
quantitative statements about the physically interesting limit of large
relative rapidity. In passing, the similarity between the Boer-Mulders effects
extracted in the pion and the nucleon is noted.Comment: 16 pages, 9 figures, 3 table
Excited light and strange hadrons from the lattice with two Chirally Improved quarks
Results for excited light and strange hadrons from the lattice with two
flavors of Chirally Improved sea quarks are presented. We perform simulations
at several values of the pion mass ranging from 250 to 600 MeV and extrapolate
to the physical pion mass. The variational method is applied to extract excited
energy levels but also to discuss the content of the states. Among others, we
explore the flavor singlet/octet content of Lambda states. In general, our
results agree well with experiment, in particular we confirm the Lambda(1405)
and its dominant flavor singlet structure.Comment: Contribution to the XV International Conference on Hadron
Spectroscopy "Hadron 2013", 4-8 November 2013, Nara, Japa
Corrections to scaling in multicomponent polymer solutions
We calculate the correction-to-scaling exponent that characterizes
the approach to the scaling limit in multicomponent polymer solutions. A direct
Monte Carlo determination of in a system of interacting
self-avoiding walks gives . A field-theory analysis based
on five- and six-loop perturbative series leads to . We
also verify the renormalization-group predictions for the scaling behavior
close to the ideal-mixing point.Comment: 21 page
The Kohn-Luttinger Effect in Gauge Theories
Kohn and Luttinger showed that a many body system of fermions interacting via
short range forces becomes superfluid even if the interaction is repulsive in
all partial waves. In gauge theories such as QCD the interaction between
fermions is long range and the assumptions of Kohn and Luttinger are not
satisfied. We show that in a U(1) gauge theory the Kohn-Luttinger phenomenon
does not take place. In QCD attractive channels always exist, but there are
cases in which the primary pairing channel leaves some fermions ungapped. As an
example we consider the unpaired fermion in the 2SC phase of QCD with two
flavors. We show that it acquires a very small gap via a mechanism analogous to
the Kohn-Luttinger effect. The gap is too small to be phenomenologically
relevant.Comment: 5 pages, 2 figure, minor revisions, to appear in PR
- …