477 research outputs found

    Geostatistical analysis of flows in the vadose zone

    Get PDF
    The thesis aims to evaluate the theoretical-applicative aspects related to the monitoring and forecasting of soil water dynamics at practical interest scale. The work is focused on the development of models for the description of water flow in homogeneous and heterogeneous soils and the resolution of them. The spatial variations of the hydraulic properties of the soil and of the solute concentration are a consequence of soil heterogeneity. Therefore, considering these variations as a consequence of a limited knowledge of the porous medium, methods will be developed that allow to estimate the mains tatistical indices of the transport process variables, namely: watercontent, pressure head, hydraulic conductivity and solute concentration. The validity of the predictions of mathematical models is linked not only to the correct schematisation adopted to describe the physical phenomena involved in the processes during the study, but also by their validation with reference to a typical case of study

    Energy-dependent spatial texturing of the charge order in 1T1T-Cux_xTiSe2_2

    Full text link
    We report a detailed study of the microscopic effects of Cu intercalation on the charge density wave (CDW) in 1\textit{T}-Cux_xTiSe2_2. Scanning tunneling microscopy and spectroscopy (STM/STS) reveal a unique, Cu driven spatial texturing of the charge ordered phase, with the appearance of energy dependent CDW patches and sharp π\pi-phase shift domain walls (π\piDWs). The energy and doping dependencies of the patchwork are directly linked to the inhomogeneous potential landscape due to the Cu intercalants. They imply a CDW gap with unusual features, including a large amplitude, the opening below the Fermi level and a shift to higher binding energy with electron doping. Unlike the patchwork, the π\piDWs occur independently of the intercalated Cu distribution. They remain atomically sharp throughout the investigated phase diagram and occur both in superconducting and non-superconducting specimen. These results provide unique atomic-scale insight on the CDW ground state, questioning the existence of incommensurate CDW domain walls and contributing to understand its formation mechanism and interplay with superconductivity

    Dimensional cross-over of the charge density wave order parameter in thin exfoliated 1T-VSe2_2

    Full text link
    The capability to isolate one to few unit-cell thin layers from the bulk matrix of layered compounds opens fascinating prospects to engineer novel electronic phases. However, a comprehensive study of the thickness dependence and of potential extrinsic effects are paramount to harness the electronic properties of such atomic foils. One striking example is the charge density wave (CDW) transition temperature in layered dichalcogenides whose thickness dependence remains unclear in the ultrathin limit. Here we present a detailed study of the thickness and temperature dependences of the CDW in VSe2_2 by scanning tunnelling microscopy (STM). We show that mapping the real-space CDW periodicity over a broad thickness range unique to STM provides essential insight. We introduce a robust derivation of the local order parameter and transition temperature based on the real space charge modulation amplitude. Both quantities exhibit a striking non-monotonic thickness dependence that we explain in terms of a 3D to 2D dimensional crossover in the FS topology. This finding highlights thickness as a true tuning parameter of the electronic ground state and reconciles seemingly contradicting thickness dependencies determined in independent transport studies

    Holographic imaging of the complex charge density wave order parameter

    Full text link
    The charge density wave (CDW) in solids is a collective ground state combining lattice distortions and charge ordering. It is defined by a complex order parameter with an amplitude and a phase. The amplitude and wavelength of the charge modulation are readily accessible to experiment. However, accurate measurements of the corresponding phase are significantly more challenging. Here we combine reciprocal and real space information to map the full complex order parameter based on topographic scanning tunneling microscopy (STM) images. Our technique overcomes limitations of earlier Fourier space based techniques to achieve distinct amplitude and phase images with high spatial resolution. Applying this analysis to transition metal dichalcogenides provides striking evidence that their CDWs consist of three individual charge modulations whose ordering vectors are connected by the fundamental rotational symmetry of the crystalline lattice. Spatial variations in the relative phases of these three modulations account for the different contrasts often observed in STM topographic images. Phase images further reveal topological defects and discommensurations, a singularity predicted by theory for a nearly commensurate CDW. Such precise real space mapping of the complex order parameter provides a powerful tool for a deeper understanding of the CDW ground state whose formation mechanisms remain largely unclear

    Subharmonic gap structures and Josephson effect in MgB2/Nb micro-constrictions

    Full text link
    Superconducting micro-constrictions between Nb tips and high quality MgB2_{2} pellets have been realized by means of a point-contact inset, driven by a micrometric screw. Measurements of the current-voltage characteristics and of the dynamical conductance versus bias have been performed in the temperature range between 4.2 K and 500 K. Above the Nb critical temperature TCNb_{C}^{Nb}, the conductance of the MgB2_2/normal-metal constrictions behaves as predicted by the BTK model for low resistance contacts while high resistance junctions show quasiparticle tunneling characteristics. Consistently, from the whole set of data we infer the value Δπ=2.5±0.2\Delta_{\pi} = 2.5 \pm 0.2 meV for the three-dimensional gap of MgB2_2. Below TCNb_{C}^{Nb}, low resistance contacts show Josephson current and subharmonic gap structures (SGS), due to multiple Andreev reflections. Simultaneous observations of both features, unambiguously indicate coupling of the 3D band of MgB2_2 with the Nb superconducting order parameter. We found that the temperature dependence of the Josephson critical current follows the classical Ambegaokar-Baratoff behavior with a value ICRN=(2.1±0.1)I_CR_N=(2.1 \pm 0.1) meV at low temperatures.Comment: 8 pages, 5 figures. Replaced with published versio

    Point Contact Spectra on YBa2_2Cu3_3O7x_{7-x}/La0.7_{0.7}Ca0.3_{0.3}MnO3_3 bilayers

    Full text link
    We present conductance characteristics of point contact junctions realized between a normal Pt-Ir tip and YBa2_2Cu3_3O7x_{7-x}/La0.7_{0.7}Ca0.3_{0.3}MnO3_3 (YBCO/LCMO) bilayers. The point contact characteristics show a zero bias conductance peak, as a consequence of the formation of Andreev bound states at the YBCO Fermi level. The temperature evolution of the spectra reveals a depressed zero bias peak and a reduced superconducting energy gap, both explainable in terms of spin polarization effects due to the LCMO layer.Comment: 4 pages, 4 EPS figures. Proceedings of EUCAS 2005. Accepted in Journal of Physics: Conference Serie

    A local field emission study of partially aligned carbon-nanotubes by AFM probe

    Full text link
    We report on the application of Atomic Force Microscopy (AFM) for studying the Field Emission (FE) properties of a dense array of long and vertically quasi-aligned multi-walled carbon nanotubes grown by catalytic Chemical Vapor Deposition on a silicon substrate. The use of nanometric probes enables local field emission measurements allowing investigation of effects non detectable with a conventional parallel plate setup, where the emission current is averaged on a large sample area. The micrometric inter-electrode distance let achieve high electric fields with a modest voltage source. Those features allowed us to characterize field emission for macroscopic electric fields up to 250 V/μ\mum and attain current densities larger than 105^5 A/cm2^2. FE behaviour is analyzed in the framework of the Fowler-Nordheim theory. A field enhancement factor γ\gamma \approx 40-50 and a turn-on field EturnonE_{turn-on} \sim15 V/μ\mum at an inter-electrode distance of 1 μ\mum are estimated. Current saturation observed at high voltages in the I-V characteristics is explained in terms of a series resistance of the order of MΩ\Omega. Additional effects as electrical conditioning, CNT degradation, response to laser irradiation and time stability are investigated and discussed
    corecore