59 research outputs found
The complexity of the nucleolus in compact games
This is the author accepted manuscript. The final version is available from ACM via the DOI in this recordThe nucleolus is a well-known solution concept for coalitional games to fairly distribute the total available worth among the players. The nucleolus is known to be NP-hard to compute over compact coalitional games, that is, over games whose functions specifying the worth associated with each coalition are encoded in terms of polynomially computable functions over combinatorial structures. In particular, hardness results have been exhibited over minimum spanning tree games, threshold games, and flow games. However, due to its intricate definition involving reasoning over exponentially many coalitions, a nontrivial upper bound on its complexity was missing in the literature and looked for. This article faces this question and precisely characterizes the complexity of the nucleolus, by exhibiting an upper bound that holds on any class of compact games, and by showing that this bound is tight even on the (structurally simple) class of graph games. The upper bound is established by proposing a variant of the standard linear-programming based algorithm for nucleolus computation and by studying a framework for reasoning about succinctly specified linear programs, which are contributions of interest in their own. The hardness result is based on an elaborate combinatorial reduction, which is conceptually relevant for it provides a "measure" of the computational cost to be paid for guaranteeing voluntary participation to the distribution process. In fact, the pre-nucleolus is known to be efficiently computable over graph games, with this solution concept being defined as the nucleolus but without guaranteeing that each player is granted with it at least the worth she can get alone, that is, without collaborating with the other players. Finally, this article identifies relevant tractable classes of coalitional games, based on the notion of type of a player. Indeed, in most applications where many players are involved, it is often the case that such players do belong in fact to a limited number of classes, which is known in advance and may be exploited for computing the nucleolus in a fast way.Part of E. Maliziaâs work was supported by the European Commission through the European Social Fund
and by Calabria Regio
The DLV System for Knowledge Representation and Reasoning
This paper presents the DLV system, which is widely considered the
state-of-the-art implementation of disjunctive logic programming, and addresses
several aspects. As for problem solving, we provide a formal definition of its
kernel language, function-free disjunctive logic programs (also known as
disjunctive datalog), extended by weak constraints, which are a powerful tool
to express optimization problems. We then illustrate the usage of DLV as a tool
for knowledge representation and reasoning, describing a new declarative
programming methodology which allows one to encode complex problems (up to
-complete problems) in a declarative fashion. On the foundational
side, we provide a detailed analysis of the computational complexity of the
language of DLV, and by deriving new complexity results we chart a complete
picture of the complexity of this language and important fragments thereof.
Furthermore, we illustrate the general architecture of the DLV system which
has been influenced by these results. As for applications, we overview
application front-ends which have been developed on top of DLV to solve
specific knowledge representation tasks, and we briefly describe the main
international projects investigating the potential of the system for industrial
exploitation. Finally, we report about thorough experimentation and
benchmarking, which has been carried out to assess the efficiency of the
system. The experimental results confirm the solidity of DLV and highlight its
potential for emerging application areas like knowledge management and
information integration.Comment: 56 pages, 9 figures, 6 table
Non-Transferable Utility Coalitional Games via Mixed-Integer Linear Constraints
Coalitional games serve the purpose of modeling payoff distribution problems in scenarios where agents can collaborate by forming coalitions in order to obtain higher worths than by acting in isolation. In the classical Transferable Utility (TU) setting, coalition worths can be freely distributed amongst agents. However, in several application scenarios, this is not the case and the Non-Transferable Utility setting (NTU) must be considered, where additional application-oriented constraints are imposed on the possible worth distributions.
In this paper, an approach to define NTU games is proposed which is based on describing allowed distributions via a set of mixed-integer linear constraints applied to an underlying TU game. It is shown that such games allow non-transferable conditions on worth distributions to be specified in a natural and succinct way. The properties and the relationships among the most prominent solution concepts for NTU games that hold when they are applied on (mixed-integer) constrained games are investigated. Finally, a thorough analysis is carried out to assess the impact of issuing constraints on the computational complexity of some of these solution concepts
- âŚ