5 research outputs found

    Field test of a continuous-variable quantum key distribution prototype

    Full text link
    We have designed and realized a prototype that implements a continuous-variable quantum key distribution protocol based on coherent states and reverse reconciliation. The system uses time and polarization multiplexing for optimal transmission and detection of the signal and phase reference, and employs sophisticated error-correction codes for reconciliation. The security of the system is guaranteed against general coherent eavesdropping attacks. The performance of the prototype was tested over preinstalled optical fibres as part of a quantum cryptography network combining different quantum key distribution technologies. The stable and automatic operation of the prototype over 57 hours yielded an average secret key distribution rate of 8 kbit/s over a 3 dB loss optical fibre, including the key extraction process and all quantum and classical communication. This system is therefore ideal for securing communications in metropolitan size networks with high speed requirements.Comment: 15 pages, 6 figures, submitted to New Journal of Physics (Special issue on Quantum Cryptography

    Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers

    Full text link
    Continuous-variable quantum key distribution protocols, based on Gaussian modulation of the quadratures of coherent states, have been implemented in recent experiments. A present limitation of such systems is the finite efficiency of the detectors, which can in principle be compensated for by the use of classical optical preamplifiers. Here we study this possibility in detail, by deriving the modified secret key generation rates when an optical parametric amplifier is placed at the output of the quantum channel. After presenting a general set of security proofs, we show that the use of preamplifiers does compensate for all the imperfections of the detectors when the amplifier is optimal in terms of gain and noise. Imperfect amplifiers can also enhance the system performance, under conditions which are generally satisfied in practice.Comment: 11 pages, 7 figures, submitted to J. Phys. B (special issue on Few Atoms Optics

    Entangled Quantum Key Distribution with a Biased Basis Choice

    Full text link
    We investigate a quantum key distribution (QKD) scheme which utilizes a biased basis choice in order to increase the efficiency of the scheme. The optimal bias between the two measurement bases, a more refined error analysis, and finite key size effects are all studied in order to assure the security of the final key generated with the system. We then implement the scheme in a local entangled QKD system that uses polarization entangled photon pairs to securely distribute the key. A 50/50 non-polarizing beamsplitter with different optical attenuators is used to simulate a variable beamsplitter in order to allow us to study the operation of the system for different biases. Over 6 hours of continuous operation with a total bias of 0.9837/0.0163 (Z/X), we were able to generate 0.4567 secure key bits per raw key bit as compared to 0.2550 secure key bits per raw key bit for the unbiased case. This represents an increase in the efficiency of the key generation rate by 79%.Comment: v2: Revised paper based on referee reports, Theory section was revised (primarily regarding finite key effects), Results section almost completely rewritten with more experimental data. 16 pages, 5 figures. v1: 14 pages, 6 figures, higher resolution figures will be available in the published articl

    High rate, long-distance quantum key distribution over 250km of ultra low loss fibres

    Full text link
    We present a fully automated quantum key distribution prototype running at 625 MHz clock rate. Taking advantage of ultra low loss fibres and low-noise superconducting detectors, we can distribute 6,000 secret bits per second over 100 km and 15 bits per second over 250km

    Composability in quantum cryptography

    Full text link
    In this article, we review several aspects of composability in the context of quantum cryptography. The first part is devoted to key distribution. We discuss the security criteria that a quantum key distribution protocol must fulfill to allow its safe use within a larger security application (e.g., for secure message transmission). To illustrate the practical use of composability, we show how to generate a continuous key stream by sequentially composing rounds of a quantum key distribution protocol. In a second part, we take a more general point of view, which is necessary for the study of cryptographic situations involving, for example, mutually distrustful parties. We explain the universal composability framework and state the composition theorem which guarantees that secure protocols can securely be composed to larger applicationsComment: 18 pages, 2 figure
    corecore