419 research outputs found

    Spectral decomposition of Bell's operators for qubits

    Get PDF
    The spectral decomposition is given for the N-qubit Bell operators with two observables per qubit. It is found that the eigenstates (when non-degenerate) are N-qubit GHZ states even for those operators that do not allow the maximal violation of the corresponding inequality. We present two applications of this analysis. In particular, we discuss the existence of pure entangled states that do not violate any Mermin-Klyshko inequality for N3N\geq 3.Comment: 12 pages, 1 figure

    Finite-key security against coherent attacks in quantum key distribution

    Full text link
    The work by Christandl, K\"onig and Renner [Phys. Rev. Lett. 102, 020504 (2009)] provides in particular the possibility of studying unconditional security in the finite-key regime for all discrete-variable protocols. We spell out this bound from their general formalism. Then we apply it to the study of a recently proposed protocol [Laing et al., Phys. Rev. A 82, 012304 (2010)]. This protocol is meaningful when the alignment of Alice's and Bob's reference frames is not monitored and may vary with time. In this scenario, the notion of asymptotic key rate has hardly any operational meaning, because if one waits too long time, the average correlations are smeared out and no security can be inferred. Therefore, finite-key analysis is necessary to find the maximal achievable secret key rate and the corresponding optimal number of signals.Comment: 9 pages, 4 figure

    Multipartite fully-nonlocal quantum states

    Full text link
    We present a general method to characterize the quantum correlations obtained after local measurements on multipartite systems. Sufficient conditions for a quantum system to be fully-nonlocal according to a given partition, as well as being (genuinely) multipartite fully-nonlocal, are derived. These conditions allow us to identify all completely-connected graph states as multipartite fully-nonlocal quantum states. Moreover, we show that this feature can also be observed in mixed states: the tensor product of five copies of the Smolin state, a biseparable and bound entangled state, is multipartite fully-nonlocal.Comment: 5 pages, 1 figure. Version published in PRA. Note that it does not contain all the results from the previous version; these will be included in a later, more general, pape

    A Witness of Multipartite Entanglement Strata

    Full text link
    We describe an entanglement witness for NN-qubit mixed states based on the properties of NN-point correlation functions. Depending on the degree of violation, this witness can guarantee that no more than MM qubits are separable from the rest of the state for any MNM\leq N, or that there is some genuine MM-party or greater multipartite entanglement present. We illustrate the use our criterion by investigating the existence of entanglement in thermal stabilizer states, where we demonstrate that the witness is capable of witnessing bound-entangled states. Intriguingly, this entanglement can be shown to persist in the thermodynamic limit at arbitrary temperature.Comment: 7 pages, 1 figur

    Security Proof for Quantum Key Distribution Using Qudit Systems

    Full text link
    We provide security bounds against coherent attacks for two families of quantum key distribution protocols that use dd-dimensional quantum systems. In the asymptotic regime, both the secret key rate for fixed noise and the robustness to noise increase with dd. The finite-key corrections are found to be almost insensitive to d20d\lesssim 20.Comment: 5 pages, 1 figure, version 3 corrects equations (9) and (11), and slightly modifies the figure to reflect the change to equation (11

    Nonlocality of cluster states of qubits

    Full text link
    We investigate cluster states of qubits with respect to their non-local properties. We demonstrate that a Greenberger-Horne-Zeilinger (GHZ) argument holds for any cluster state: more precisely, it holds for any partial, thence mixed, state of a small number of connected qubits (five, in the case of one-dimensional lattices). In addition, we derive a new Bell inequality that is maximally violated by the 4-qubit cluster state and is not violated by the 4-qubit GHZ state.Comment: 5 pages; paragraph V.B contains a comparison with Guehne et al., quant-ph/041005

    Violation of Bell's inequalities implies distillability for N qubits

    Full text link
    We consider quantum systems composed of NN qubits, and the family of all Bell's correlation inequalities for two two-valued measurements per site. We show that if a NN-qubit state ρ\rho violates any of these inequalities, then it is at least bipartite distillable. Indeed there exists a link between the amount of Bell's inequality violation and the degree of distillability. Thus, we strengthen the interpretation of Bell's inequalities as detectors of useful entanglement.Comment: 6 pages, 3 figures, REVTEX. List of authors extended. Partially rewritten, a rather qualitative explanation of the results. Conclusions unchange
    corecore