637 research outputs found

    Occlusion Effects and the Distribution of Interstellar Cloud Sizes and Masses

    Full text link
    The frequency distributions of sizes of ``clouds" and ``clumps" within clouds are significantly flatter for extinction surveys than for CO spectral line surveys, even for comparable size ranges. A possible explanation is the blocking of extinction clouds by larger foreground clouds (occlusion), which should not affect spectral line surveys much because clouds are resolved in velocity space along a given line of sight. We present a simple derivation of the relation between the true and occluded size distributions, assuming clouds are uniformly distributed in space or the distance to a cloud comples is much greater than the size of the complex. Because the occlusion is dominated by the largest clouds, we find that occlusion does not affect the measured size distribution except for sizes comparable to the largest size, implying that occlusion is not responsible for the discrepancy if the range in sizes of the samples is large. However, we find that the range in sizes for many of the published observed samples is actually quite small, which suggests that occlusion does affect the extinction sample and/or that the discrepancy could arise from the different operational definitions and selection effects involved in the two samples. Size and mass spectra from an IRAS survey (Wood \etal\ 1994) suggest that selection effects play a major role in all the surveys. We conclude that a reliable determination of the ``true" size and mass spectra of clouds will require spectral line surveys with very high signal-to-noise and sufficient resolution and sampling to cover a larger range of linear sizes, as well as careful attention to selection effects.Comment: 13 pages, LATEX, aas style, Submitted to Ap

    Wind-Driven Gas Networks and Star Formation in Galaxies: Reaction-Advection Hydrodynamic Simulations

    Full text link
    The effects of wind-driven star formation feedback on the spatio-temporal organization of stars and gas in galaxies is studied using two-dimensional intermediate-representational quasi-hydrodynamical simulations. The model retains only a reduced subset of the physics, including mass and momentum conservation, fully nonlinear fluid advection, inelastic macroscopic interactions, threshold star formation, and momentum forcing by winds from young star clusters on the surrounding gas. Expanding shells of swept-up gas evolve through the action of fluid advection to form a ``turbulent'' network of interacting shell fragments whose overall appearance is a web of filaments (in two dimensions). A new star cluster is formed whenever the column density through a filament exceeds a critical threshold based on the gravitational instability criterion for an expanding shell, which then generates a new expanding shell after some time delay. A filament- finding algorithm is developed to locate the potential sites of new star formation. The major result is the dominance of multiple interactions between advectively-distorted shells in controlling the gas and star morphology, gas velocity distribution and mass spectrum of high mass density peaks, and the global star formation history. The gas morphology observations of gas in the LMC and in local molecular clouds. The frequency distribution of present-to-past average global star formation rate, the distribution of gas velocities in filaments (found to be exponential), and the cloud mass spectra (estimated using a structure tree method), are discussed in detail.Comment: 40 pp, 15 eps figs, mnras style, accepted for publication in MNRAS, abstract abridged, revisions in response to referee's comment

    Rates of Observable Black Hole Emergence in Supernovae

    Get PDF
    A newly formed black hole may be directly identified if late-time accretion of material from the base of the ejected envelope generates a luminosity that is observable in the tail of the supernova light curve. In this work we estimate the rate at which events where the black hole ``emerges'' in the supernova light curve can be detected with present capabilities. Our investigation is based on an analytical model of the accretion luminosity at emergence as a function of progenitor mass, coupled to the inferred rate of observed Type II supernovae in nearby galaxies. We find through a parameter survey that under optimistic assumptions the potential rate of observable events can be as high as several per year. However, supernovae which produce black holes are also likely to be low energy explosions and therefore subluminous, as was the case for the best candidate to date, SN1997D. If black hole-forming supernovae are underdetected owing to lower luminosities, the rate of observing black hole emergence is probably not larger than once every few years. We therefore emphasize the importance of dedicated searches for nearby supernovae as well as faint supernovae projects for improving the prospects of observationally certifying the supernova--black hole connection.Comment: ApJ accepted, 13 pages, uses emulateapj

    Testing population synthesis models with globular cluster colors

    Get PDF
    We have measured an extensive set of UBVRIJHK colors for M31 globular clusters [Barmby et al. 2000]. We compare the predicted simple stellar population colors of three population synthesis models to the intrinsic colors of Galactic and M31 globular clusters. The best-fitting models fit the cluster colors very well -- the weighted mean color offsets are all < 0.05 mag. The most significant offsets between model and data are in the U and B passbands; these are not unexpected and are likely due to problems with the spectral libraries used by the models. The metal-rich clusters ([Fe/H] > -0.8) are best fit by young (8 Gyr) models, while the metal-poor clusters are best fit by older (12--16 Gyr) models. If this range of globular cluster ages is correct, it implies that conditions for cluster formation must have existed for a substantial fraction of the galaxies' lifetimes.Comment: To appear in ApJ Letters; 8 pages including 3 figures and 1 tabl

    On the Sensitivity of Massive Star Nucleosynthesis and Evolution to Solar Abundances and to Uncertainties in Helium Burning Reaction Rates

    Full text link
    We explore the dependence of pre-supernova evolution and supernova nucleosynthesis yields on the uncertainties in helium burning reaction rates. Using the revised solar abundances of Lodders (2003) for the initial stellar composition, instead of those of Anders & Grevesse (1989), changes the supernova yields and limits the constraints that those yields place on the 12C(a,g)16O reaction rate. The production factors of medium-weight elements (A = 16-40) were found to be in reasonable agreement with observed solar ratios within the current experimental uncertainties in the triple alpha reaction rate. Simultaneous variations by the same amount in both reaction rates or in either of them separately, however, can induce significant changes in the central 12C abundance at core carbon ignition and in the mass of the supernova remnant. It therefore remains important to have experimental determinations of the helium burning rates so that their ratio and absolute values are known with an accuracy of 10% or better.Comment: Accepted for publication by the Astrophysical Journa

    The Stellar Mass Spectrum in the Young Populous Cluster NGC 1866

    Full text link
    The young populous cluster NGC 1866 in the Large Magellanic Cloud LMC), which is probably one of the most massive object formed in the LMC during the last ~ 3 Gyr, appears to have an unexpectedly high mass-to-light ratio. From its velocity dispersion Fischer et al. (1992) find its mass to be (1.35 " 0.25) x 105 Mu. The luminosity of this cluster is MV = -8.93 " 0.13, corresponding to LV = (3.2 " 0.4) x 105 LV (u). This yields M/LV = 0.42 " 0.09 in solar units. For a cluster of age 0.1 Gyr such a relatively high mass-to-light ratio requires a mass spectrum with an exponent x = 1.72 " 0.09; or x = 1.75 " 0.09 if mass loss by evolving stars is taken into account.Comment: To be published in the October 1999 issue of the Publications of the Astronomical Society of the Pacifi

    Spectroscopy of Close Companions to QSOs and the Ages of Interaction-Induced Starbursts

    Get PDF
    We present low-resolution absorption-line spectra of three candidate close ( < 3 arcsec) companions to the low redshift QSOs 3CR 323.1, PG 1700+518, and PKS 2135-147. The spectra were obtained with LRIS on the Keck telescopes and with the Faint Object Spectrograph on the University of Hawaii 2.2 m telescope. For 3CR 323.1 and PG 1700+518, we measure relative velocities that are consistent with an association between the QSOs and their companion galaxies. The spectral features of the companion galaxy to 3CR 323.1 indicate a stellar population of intermediate age (approx. 2.3 Gyr). In contrast, the spectrum of the companion object to PG 1700+518 shows strong Balmer absorption lines from a relatively young stellar population, along with the Mg Ib absorption feature and the 4000 A break from an older population. By modeling the two stellar components of this spectrum, it is possible to estimate the time that has elapsed since the end of the most recent major starburst event: we obtain approx. 0.1 Gyr. This event may have coincided with an interaction that triggered the QSO activity. Finally, our spectroscopy shows conclusively that the supposed companion to PKS 2135-147 is actually a projected Galactic G star.Comment: 10 pages, 5 Postscript figures. Latex (AASTEX). To appear in ApJ. Letters, Volume 480 (1997
    • …
    corecore