109 research outputs found
The New Genetic Landscape of Cushingâs Disease: Deubiquitinases in the Spotlight
Cushingâs disease (CD) is a rare condition caused by adrenocorticotropic hormone (ACTH)-producing adenomas of the pituitary, which lead to hypercortisolism that is associated with high morbidity and mortality. Treatment options in case of persistent or recurrent disease are limited, but new insights into the pathogenesis of CD are raising hope for new therapeutic avenues. Here, we have performed a meta-analysis of the available sequencing data in CD to create a comprehensive picture of CDâs genetics. Our analyses clearly indicate that somatic mutations in the deubiquitinases are the key drivers in CD, namely USP8 (36.5%) and USP48 (13.3%). While in USP48 only Met415 is affected by mutations, in USP8 there are 26 different mutations described. However, these different mutations are clustering in the same hotspot region (affecting in 94.5% of cases Ser718 and Pro720). In contrast, pathogenic variants classically associated with tumorigenesis in genes like TP53 and BRAF are also present in CD but with low incidence (12.5% and 7%). Importantly, several of these mutations might have therapeutic potential as there are drugs already investigated in preclinical and clinical setting for other diseases. Furthermore, network and pathway analyses of all somatic mutations in CD suggest a rather unified picture hinting towards converging oncogenic pathways
Single-nucleus and spatial transcriptome reveal adrenal homeostasis in normal and tumoural adrenal glands
The human adrenal gland is a complex endocrine tissue. Studies on adrenal renewal have been limited to animal models or human foetuses. Enhancing our understanding of adult human adrenal homeostasis is crucial for gaining insights into the pathogenesis of adrenal diseases, such as adrenocortical tumours.
Here, we present a comprehensive cellular genomics analysis of the adult human normal adrenal gland, combining single-nuclei RNA sequencing and spatial transcriptome data to reconstruct adrenal gland homeostasis. As expected, we identified primary cells of the various zones of the adrenal cortex and medulla, but we also uncovered additional cell types. They constitute the adrenal microenvironment, including immune cells, mostly composed of a large population of M2 macrophages, and new cell populations, including different subpopulations of vascular-endothelial cells and cortical-neuroendocrine cells. Utilizing spatial transcriptome and pseudotime trajectory analysis, we support evidence of the centripetal dynamics of adrenocortical cell maintenance and the essential role played by Wnt/ÎČ-catenin, sonic hedgehog, and fibroblast growth factor pathways in the adult adrenocortical homeostasis. Furthermore, we compared single-nuclei transcriptional profiles obtained from six healthy adrenal glands and twelve adrenocortical adenomas. This analysis unveiled a notable heterogeneity in cell populations within the adenoma samples. In addition, we identified six distinct adenoma-specific clusters, each with varying distributions based on steroid profiles and tumour mutational status.
Overall, our results provide novel insights into adrenal homeostasis and molecular mechanisms potentially underlying early adrenocortical tumorigenesis and/or autonomous steroid secretion. Our cell atlas represents a powerful resource to investigate other adrenal-related pathologies
Targeted gene expression profile reveals CDK4 as therapeutic target for selected patients with adrenocortical carcinoma
Adrenocortical carcinomas (ACC) are aggressive tumors with a heterogeneous prognosis and limited therapeutic options for advanced stages. This study aims to identify novel drug targets for a personalized treatment in ACC. RNA was isolated from 40 formalin-fixed paraffin-embedded ACC samples. We evaluated gene expression of 84 known cancer drug targets by reverse transcriptase quantitative real time-PCR and calculated fold change using 5 normal adrenal glands as reference (overexpression by fold change >2.0). The most promising candidate cyclin-dependent kinase 4 (CDK4) was investigated at protein level in 104 ACC samples and tested by in vitro experiments in two ACC cell lines (NCI-H295R and MUC1). The most frequently overexpressed genes were TOP2A (100% of cases, median fold change = 16.5), IGF2 (95%, fold change = 52.9), CDK1 (80%, fold change = 6.7), CDK4 (62%, fold change = 2.6), PLK4 (60%, fold change = 2.8), and PLK1 (52%, fold change = 2.3). CDK4 was chosen for functional validation, as it is actionable by approved CDK4/6-inhibitors (e.g., palbociclib). Nuclear immunostaining of CDK4 significantly correlated with mRNA expression (R = 0.52, P < 0.005). We exposed both NCI-H295R and MUC1 cell lines to palbociclib and found a concentration- and time-dependent reduction of cell viability, which was more pronounced in the NCI-H295R cells in line with higher CDK4 expression. Furthermore, we tested palbociclib in combination with insulin-like growth factor 1/insulin receptor inhibitor linsitinib showing an additive effect. In conclusion, we demonstrate that RNA profiling is useful to discover potential drug targets and that CDK4/6 inhibitors are promising candidates for treatment of selected patients with ACC
Sunitinib Inhibits Cell Proliferation and Alters Steroidogenesis by Down-Regulation of HSD3B2 in Adrenocortical Carcinoma Cells
The multi-tyrosine kinase inhibitor sunitinib is used in the treatment of several solid tumors. Animal experiments pointed to an adrenotoxic effect of sunitinib. Therefore, we evaluated the expression of key targets of sunitinib in human adrenocortical carcinoma (ACC) tumor samples and investigated its in vitro effects in ACC cell lines. We carried out immunohistochemistry for vascular endothelial growth factor (VEGF) and its receptor (VEGF-R2) in 157 ACC samples and nine normal adrenal glands. VEGF and VEGF-R2 protein were expressed in 72 and 99% of ACC samples, respectively. Using NCI-H295 and SW13 ACC cell lines, we investigated the effects of sunitinib on cell proliferation. Sunitinib reduced dose-dependently cell viability of both NCI-H295 and SW13 cells (SW13: 0.1âÎŒM 96â±â7%, 1âÎŒM 90â±â9%*, 5âÎŒM 62â±â6%*, controls 100â±â9%; *pâ<â0.05). To determine sunitinib effects on steroidogenesis, we measured steroid hormones in cell culture supernatant by gas chromatographyâmass spectrometry. We observed a pronounced decrease of cortisol secretion (1âÎŒM 90.1â±â1.5%*, 5âÎŒM 57.2â±â0.3%*, controls 100â±â2.4%) and a concomitant increase in the DHEA/4-androstenedione and 17-hydroxypregnenolone/17-hydroxyprogesterone ratios, indicating specific inhibition of 3ÎČ-hydroxysteroid dehydrogenase (HSD3B2). In yeast microsomes transformed with HSD3B2, no direct inhibition of HSD3B2 by sunitinib was detected. Sunitinib induced down-regulation of HSD3B2 mRNA and protein in ACC cell lines (mRNA: 1âÎŒM 44â±â16%*; 5âÎŒM 22â±â2%*; 10âÎŒM 19â±â4%*; protein: 1âÎŒM 82â±â8%; 5âÎŒM 63â±â8%*; 10âÎŒM 55â±â9%*). CYP11B1 was down-regulated at mRNA but not at protein level and CYP11A1 remained unchanged. In conclusion, target molecules of sunitinib are expressed in the vast majority of ACC samples. Sunitinib exhibits anti-proliferative effects in vitro, and appears to specifically block adrenal steroidogenesis by down-regulation of HSD3B2, rendering it a promising option for treatment of ACC
Differential expression of the protein kinase A subunits in normal adrenal glands and adrenocortical adenomas
Somatic mutations in protein kinase A catalytic a subunit (PRKACA) were found to be causative for 30-40% of cortisol-producing adenomas (CPA) of the adrenal gland, rendering PKA signalling constitutively active. In its resting state, PKA is a stable and inactive heterotetramer, consisting of two catalytic and two regulatory subunits with the latter inhibiting PKA activity. The human genome encodes three different PKA catalytic subunits and four different regulatory subunits that are preferentially expressed in different organs. In normal adrenal glands all regulatory subunits are expressed, while CPA exhibit reduced protein levels of the regulatory subunit II beta. In this study, we linked for the first time the loss of RII beta protein levels to the PRKACA mutation status and found the down-regulation of RII beta to arise post-transcriptionally. We further found the PKA subunit expression pattern of different tumours is also present in the zones of the normal adrenal cortex and demonstrate that the different PKA subunits have a differential expression pattern in each zone of the normal adrenal gland, indicating potential specific roles of these subunits in the regulation of different hormones secretion
SOAT1: A Suitable Target for Therapy in High-Grade Astrocytic Glioma?
Targeting molecular alterations as an effective treatment for isocitrate dehydrogenasewildtype
glioblastoma (GBM) patients has not yet been established. Sterol-O-Acyl Transferase 1
(SOAT1), a key enzyme in the conversion of endoplasmic reticulum cholesterol to esters for storage in
lipid droplets (LD), serves as a target for the orphan drug mitotane to treat adrenocortical carcinoma.
Inhibition of SOAT1 also suppresses GBM growth. Here, we refined SOAT1-expression in GBM
and IDH-mutant astrocytoma, CNS WHO grade 4 (HGA), and assessed the distribution of LD in
these tumors. Twenty-seven GBM and three HGA specimens were evaluated by multiple GFAP,
Iba1, IDH1 R132H, and SOAT1 immunofluorescence labeling as well as Oil Red O staining. To
a small extent SOAT1 was expressed by tumor cells in both tumor entities. In contrast, strong
expression was observed in glioma-associated macrophages. Triple immunofluorescence labeling
revealed, for the first time, evidence for SOAT1 colocalization with Iba1 and IDH1 R132H, respectively.
Furthermore, a notable difference in the amount of LD between GBM and HGA was observed.
Therefore, SOAT1 suppression might be a therapeutic option to target GBM and HGA growth and
invasiveness. In addition, the high expression in cells related to neuroinflammation could be beneficial
for a concomitant suppression of protumoral microglia/macrophages
SOAT1: a suitable target for therapy in high-grade astrocytic glioma?
Targeting molecular alterations as an effective treatment for isocitrate dehydrogenase-wildtype glioblastoma (GBM) patients has not yet been established. Sterol-O-Acyl Transferase 1 (SOAT1), a key enzyme in the conversion of endoplasmic reticulum cholesterol to esters for storage in lipid droplets (LD), serves as a target for the orphan drug mitotane to treat adrenocortical carcinoma. Inhibition of SOAT1 also suppresses GBM growth. Here, we refined SOAT1-expression in GBM and IDH-mutant astrocytoma, CNS WHO grade 4 (HGA), and assessed the distribution of LD in these tumors. Twenty-seven GBM and three HGA specimens were evaluated by multiple GFAP, Iba1, IDH1 R132H, and SOAT1 immunofluorescence labeling as well as Oil Red O staining. To a small extent SOAT1 was expressed by tumor cells in both tumor entities. In contrast, strong expression was observed in glioma-associated macrophages. Triple immunofluorescence labeling revealed, for the first time, evidence for SOAT1 colocalization with Iba1 and IDH1 R132H, respectively. Furthermore, a notable difference in the amount of LD between GBM and HGA was observed. Therefore, SOAT1 suppression might be a therapeutic option to target GBM and HGA growth and invasiveness. In addition, the high expression in cells related to neuroinflammation could be beneficial for a concomitant suppression of protumoral microglia/macrophages
- âŠ