24 research outputs found

    Thermoacoustic instability - a dynamical system and time domain analysis

    Full text link
    This study focuses on the Rijke tube problem, which includes features relevant to the modeling of thermoacoustic coupling in reactive flows: a compact acoustic source, an empirical model for the heat source, and nonlinearities. This thermo-acoustic system features a complex dynamical behavior. In order to synthesize accurate time-series, we tackle this problem from a numerical point-of-view, and start by proposing a dedicated solver designed for dealing with the underlying stiffness, in particular, the retarded time and the discontinuity at the location of the heat source. Stability analysis is performed on the limit of low-amplitude disturbances by means of the projection method proposed by Jarlebring (2008), which alleviates the linearization with respect to the retarded time. The results are then compared to the analytical solution of the undamped system, and to Galerkin projection methods commonly used in this setting. This analysis provides insight into the consequences of the various assumptions and simplifications that justify the use of Galerkin expansions based on the eigenmodes of the unheated resonator. We illustrate that due to the presence of a discontinuity in the spatial domain, the eigenmodes in the heated case, predicted by using Galerkin expansion, show spurious oscillations resulting from the Gibbs phenomenon. By comparing the modes of the linear to that of the nonlinear regime, we are able to illustrate the mean-flow modulation and frequency switching. Finally, time-series in the fully nonlinear regime, where a limit cycle is established, are analyzed and dominant modes are extracted. The analysis of the saturated limit cycles shows the presence of higher frequency modes, which are linearly stable but become significant through nonlinear growth of the signal. This bimodal effect is not captured when the coupling between different frequencies is not accounted for.Comment: Submitted to Journal of Fluid Mechanic

    Fundamental and subharmonic transition to turbulence in zero-pressure-gradient flat-plate boundary layers

    Full text link
    In this fluid dynamics video, recent simulations of transition to turbulence in compressible (M = 0.2), zero-pressure-gradient flat-plate boundary layers triggered by fundamental (Klebanoff K-type) and subharmonic (Herbert H-type) secondary instabilities of Tollmien-Schlichting waves are highlighted.Comment: Two fluid dynamics videos are included for the 64th Annual APS DFD Gallery of Fluid Motion in Baltimore, Maryland 201

    A Conservative Cartesian Cut Cell Method for the Solution of the Incompressible Navier-Stokes Equations on Staggered Meshes

    Full text link
    The treatment of complex geometries in Computational Fluid Dynamics applications is a challenging endeavor, which immersed boundary and cut-cell techniques can significantly simplify by alleviating the meshing process required by body-fitted meshes. These methods however introduce new challenges, as the formulation of accurate and well-posed discrete operators becomes nontrivial. Here, a conservative cartesian cut cell method is proposed for the solution of the incompressible Navier--Stokes equation on staggered Cartesian grids. Emphasis is set on the structure of the discrete operators, designed to mimic the properties of the continuous ones while retaining a nearest-neighbor stencil. For convective transport, a divergence is proposed and shown to also be skew-symmetric as long as the divergence-free condition is satisfied, ensuring mass, momentum and kinetic energy conservation (the latter in the inviscid limit). For viscous transport, conservative and symmetric operators are proposed for Dirichlet boundary conditions. Symmetry ensures the existence of a sink term (viscous dissipation) in the discrete kinetic energy budget, which is beneficial for stability. The cut-cell discretization possesses the much desired summation-by-parts (SBP) properties. In addition, it is fully conservative, mathematically provably stable and supports arbitrary geometries. The accuracy and robustness of the method are then demonstrated with flows past a circular cylinder and an airfoil

    A Comprehensive Study of Adjoint-Based Optimization of Non-Linear Systems with Application to Burgers' Equation

    Full text link
    In the context of adjoint-based optimization, nonlinear conservation laws pose significant problems regarding the existence and uniqueness of both direct and adjoint solutions, as well as the well-posedness of the problem for sensitivity analysis and gradient-based optimization algorithms. In this paper we will analyze the convergence of the adjoint equations to known exact solutions of the inviscid Burgers' equation for a variety of numerical schemes. The effect of the non-differentiability of the underlying approximate Riemann solver, complete vs. incomplete differentiation of the discrete schemes and inconsistencies in time advancement will be discussed.Comment: 28 pages, 6 figures, published 10 Jun 201

    Reduced-order representation of near-wall structures in the late transitional boundary layer

    No full text
    International audienceDirect numerical simulations (DNS) of controlled H- and K-type transitions to turbulence in an M=0.2 (where M is the Mach number) nominally zero-pressure-gradient and spatially developing flat-plate boundary layer are considered. Sayadi, Hamman & Moin (J. Fluid Mech., vol. 724, 2013, pp. 480-509) showed that with the start of the transition process, the skin-friction profiles of these controlled transitions diverge abruptly from the laminar value and overshoot the turbulent estimation. The objective of this work is to identify the structures of dynamical importance throughout the transitional region. Dynamic mode decomposition (DMD) (Schmid, J. Fluid Mech., vol. 656, 2010, pp. 5-28) as an optimal phase-averaging process, together with triple decomposition (Reynolds & Hussain, J. Fluid Mech., vol. 54 (02), 1972, pp. 263-288), is employed to assess the contribution of each coherent structure to the total Reynolds shear stress. This analysis shows that low-frequency modes, corresponding to the legs of hairpin vortices, contribute most to the total Reynolds shear stress. The use of composite DMD of the vortical structures together with the skin-friction coefficient allows the assessment of the coupling between near-wall structures captured by the low-frequency modes and their contribution to the total skin-friction coefficient. We are able to show that the low-frequency modes provide an accurate estimate of the skin-friction coefficient through the transition process. This is of interest since large-eddy simulation (LES) of the same configuration fails to provide a good prediction of the rise to this overshoot. The reduced-order representation of the flow is used to compare the LES and the DNS results within this region. Application of this methodology to the LES of the H-type transition illustrates the effect of the grid resolution and the subgrid-scale model on the estimated shear stress of these low-frequency modes. The analysis shows that although the shapes and frequencies of the low-frequency modes are independent of the resolution, the amplitudes are underpredicted in the LES, resulting in underprediction of the Reynolds shear stress

    RONAALP: Reduced-Order Nonlinear Approximation with Active Learning Procedure

    Full text link
    Many engineering applications rely on the evaluation of expensive, non-linear high-dimensional functions. In this paper, we propose the RONAALP algorithm (Reduced Order Nonlinear Approximation with Active Learning Procedure) to incrementally learn a fast and accurate reduced-order surrogate model of a target function on-the-fly as the application progresses. First, the combination of nonlinear auto-encoder, community clustering and radial basis function networks allows to learn an efficient and compact surrogate model with limited training data. Secondly, the active learning procedure overcome any extrapolation issue when evaluating the surrogate model outside of its initial training range during the online stage. This results in generalizable, fast and accurate reduced-order models of high-dimensional functions. The method is demonstrated on three direct numerical simulations of hypersonic flows in chemical nonequilibrium. Accurate simulations of these flows rely on detailed thermochemical gas models that dramatically increase the cost of such calculations. Using RONAALP to learn a reduced-order thermodynamic model surrogate on-the-fly, the cost of such simulation was reduced by up to 75% while maintaining an error of less than 10% on relevant quantities of interest.Comment: 38 pages, 16 figure

    Adjoint-based sensitivity analysis of steady char burnout

    Get PDF
    Simulations of pulverised coal combustion rely on various models, required in order to correctly approximate the flow, chemical reactions, and behavior of solid particles. These models, in turn, rely on multiple model parameters, which are determined through experiments or small-scale simulations and contain a certain level of uncertainty. The competing effects of transport, particle physics, and chemistry give rise to various scales and disparate dynamics, making it a very challenging problem to analyse. Therefore, the steady combustion process of a single solid particle is considered as a starting point for this study. As an added complication, the large number of parameters present in such simulations makes a purely forward approach to sensitivity analysis very expensive and almost infeasible. Therefore, the use of adjoint-based algorithms, to identify and quantify the underlying sensitivities and uncertainties, is proposed. This adjoint framework bears a great advantage in this case, where a large input space is analysed, since a single forward and backward sweep provides sensitivity information with respect to all parameters of interest. In order to investigate the applicability of such methods, both discrete and continuous adjoints are considered, and compared to the conventional approaches, such as finite differences, and forward sensitivity analysis. Various quantities of interest are considered, and sensitivities with respect to the relevant combustion parameters are reported for two different freestream compositions, describing air and oxy-atmospheres. This study serves as a benchmark for future research, where unsteady and finally turbulent cases will be considered.Comment: Submitted to Combustion Theory and Modellin
    corecore