669 research outputs found
Asymptotic constant-factor approximation algorithm for the Traveling Salesperson Problem for Dubins' vehicle
This article proposes the first known algorithm that achieves a
constant-factor approximation of the minimum length tour for a Dubins' vehicle
through points on the plane. By Dubins' vehicle, we mean a vehicle
constrained to move at constant speed along paths with bounded curvature
without reversing direction. For this version of the classic Traveling
Salesperson Problem, our algorithm closes the gap between previously
established lower and upper bounds; the achievable performance is of order
Convexity and Robustness of Dynamic Traffic Assignment and Freeway Network Control
We study the use of the System Optimum (SO) Dynamic Traffic Assignment (DTA)
problem to design optimal traffic flow controls for freeway networks as modeled
by the Cell Transmission Model, using variable speed limit, ramp metering, and
routing. We consider two optimal control problems: the DTA problem, where
turning ratios are part of the control inputs, and the Freeway Network Control
(FNC), where turning ratios are instead assigned exogenous parameters. It is
known that relaxation of the supply and demand constraints in the cell-based
formulations of the DTA problem results in a linear program. However, solutions
to the relaxed problem can be infeasible with respect to traffic dynamics.
Previous work has shown that such solutions can be made feasible by proper
choice of ramp metering and variable speed limit control for specific traffic
networks. We extend this procedure to arbitrary networks and provide insight
into the structure and robustness of the proposed optimal controllers. For a
network consisting only of ordinary, merge, and diverge junctions, where the
cells have linear demand functions and affine supply functions with identical
slopes, and the cost is the total traffic volume, we show, using the maximum
principle, that variable speed limits are not needed in order to achieve
optimality in the FNC problem, and ramp metering is sufficient. We also prove
bounds on perturbation of the controlled system trajectory in terms of
perturbations in initial traffic volume and exogenous inflows. These bounds,
which leverage monotonicity properties of the controlled trajectory, are shown
to be in close agreement with numerical simulation results
Robust Network Routing under Cascading Failures
We propose a dynamical model for cascading failures in single-commodity
network flows. In the proposed model, the network state consists of flows and
activation status of the links. Network dynamics is determined by a, possibly
state-dependent and adversarial, disturbance process that reduces flow capacity
on the links, and routing policies at the nodes that have access to the network
state, but are oblivious to the presence of disturbance. Under the proposed
dynamics, a link becomes irreversibly inactive either due to overload condition
on itself or on all of its immediate downstream links. The coupling between
link activation and flow dynamics implies that links to become inactive
successively are not necessarily adjacent to each other, and hence the pattern
of cascading failure under our model is qualitatively different than standard
cascade models. The magnitude of a disturbance process is defined as the sum of
cumulative capacity reductions across time and links of the network, and the
margin of resilience of the network is defined as the infimum over the
magnitude of all disturbance processes under which the links at the origin node
become inactive. We propose an algorithm to compute an upper bound on the
margin of resilience for the setting where the routing policy only has access
to information about the local state of the network. For the limiting case when
the routing policies update their action as fast as network dynamics, we
identify sufficient conditions on network parameters under which the upper
bound is tight under an appropriate routing policy. Our analysis relies on
making connections between network parameters and monotonicity in network state
evolution under proposed dynamics
- …