264 research outputs found
Central nervous system commitment in Chagas disease
The involvement of the central nervous system (CNS) during human acute and chronic Chagas disease (CD) has been largely reported. Meningoencephalitis is a frequent finding during the acute infection, while during chronic phase the CNS involvement is often accompanied by behavioral and cognitive impairments. In the same vein, several studies have shown that rodents infected with Trypanosoma cruzi (T. cruzi) display behavior abnormalities, accompanied by brain inflammation, in situ production of pro-inflammatory cytokines and parasitism in diverse cerebral areas, with involvement of microglia, macrophages, astrocytes, and neurons. However, the mechanisms used by the parasite to reach the brain remain now largely unknown. Herein we discuss the evidence unravelling the CNS involvement and complexity of neuroimmune interactions that take place in acute and chronic CD. Also, we provide some clues to hypothesize brain infections routes in human and experimental acute CD following oral infection by T. cruzi, an infection route that became a major CD related public health issue in Brazil.Fil: Useche, Yerly. Fundación Oswaldo Cruz; BrasilFil: Perez, Ana Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Inmunología Clinica y Experimental de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Médicas. Instituto de Inmunología Clinica y Experimental de Rosario; ArgentinaFil: de Meis, Juliana. Fundación Oswaldo Cruz; BrasilFil: Bonomo, Adriana. Fundación Oswaldo Cruz; BrasilFil: Savino, Wilson. Fundación Oswaldo Cruz; Brasi
The Thymus in Chagas Disease: Molecular Interactions Involved in Abnormal T-Cell Migration and Differentiation
Chagas disease, caused by the protozoan parasite T. cruzi, is a prevalent parasitic disease in Latin America. Presently, it is spreading around the world by human migration, thus representing a new global health issue. Chronically infected individuals reveal a dissimilar disease progression: while nearly 60% remain without apparent disease for life, 30% develop life-threatening pathologies, such as chronic chagasic cardiomyopathy (CCC) or megaviscerae. Inflammation driven by parasite persistence seems to be involved in the pathophysiology of the disease. However, there is also evidence of the occurrence of autoimmune events, mainly caused by molecular mimicry and bystander activation. In experimental models of disease, is well-established that T. cruzi infects the thymus and causes locally profound structural and functional alterations. The hallmark is a massive loss of CD4+CD8+ double positive (DP) thymocytes, mainly triggered by increased levels of glucocorticoids, although other mechanisms seem to act simultaneously. Thymic epithelial cells (TEC) exhibited an increase in extracellular matrix deposition, which are related to thymocyte migratory alterations. Moreover, medullary TEC showed a decreased expression of AIRE and altered expression of microRNAs, which might be linked to a disrupted negative selection of the T-cell repertoire. Also, almost all stages of thymocyte development are altered, including an abnormal output of CD4−CD8− double negative (DN) and DP immature and mature cells, many of them carrying prohibited TCR-Vβ segments. Evidence has shown that DN and DP cells with an activated phenotype can be tracked in the blood of humans with chronic Chagas disease and also in the secondary lymphoid organs and heart of infected mice, raising new questions about the relevance of these populations in the pathogenesis of Chagas disease and their possible link with thymic alterations and an immunoendocrine imbalance. Here, we discuss diverse molecular mechanisms underlying thymic abnormalities occurring during T. cruzi infection and their link with CCC, which may contribute to the design of innovative strategies to control Chagas disease pathology.Fil: Perez, Ana Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Inmunología Clinica y Experimental de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Médicas. Instituto de Inmunología Clinica y Experimental de Rosario; ArgentinaFil: de Meis, Juliana. Fundación Oswaldo Cruz; BrasilFil: Rodriguez Galan, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Savino, Wilson. Fundación Oswaldo Cruz; Brasi
Extrathymic CD4+CD8+ lymphocytes in Chagas disease: Possible relationship with an immunoendocrine imbalance
Double positive CD4+CD8+ (DP) T cells normally represent a thymic subpopulation that is developed in the thymus as precursors of CD4+ or CD8+ single-positive T cells. Recent evidence showed that DP cells could be also tracked in secondary lymph organs showing an activated phenotype. The detection of DP activated population in the periphery that bears T cell receptors unselected during the thymic negative selection of either murine models of Trypanosoma cruzi infection and similar findings in human with Chagas disease raise new questions about the relevance of this population in the pathogenesis of this major parasitic disease and their possible links with immunoendocrine alterations.Fil: Perez, Ana Rosa. Universidad Nacional de Rosario. Facultad de Ciencias Médicas. Instituto de Inmunología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Morrot, Alexandre. Universidade Federal do Rio de Janeiro; BrasilFil: Berbert, Luiz R.. Fundación Oswaldo Cruz; BrasilFil: Terra Granado, Eugenia. Fundación Oswaldo Cruz; BrasilFil: Savino, Wilson. Fundación Oswaldo Cruz; Brasi
TNF-α Is Involved in the Abnormal Thymocyte Migration during Experimental Trypanosoma cruzi Infection and Favors the Export of Immature Cells
Previous studies revealed a significant production of inflammatory cytokines together with severe thymic atrophy and thymocyte migratory disturbances during experimental Chagas disease. Migratory activity of thymocytes and mature T cells seem to be finely tuned by cytokines, chemokines and extracellular matrix (ECM) components. Systemic TNF-α is enhanced during infection and appears to be crucial in the response against the parasite. However, it also seems to be involved in disease pathology, since it is implicated in the arrival of T cells to effector sites, including the myocardium. Herein, we analyzed the role of TNF-α in the migratory activity of thymocytes in Trypanosoma cruzi (T. cruzi) acutely-infected mice. We found increased expression and deposition of TNF-α in the thymus of infected animals compared to controls, accompanied by increased co-localization of fibronectin, a cell migration-related ECM molecule, whose contents in the thymus of infected mice is also augmented. In-vivo studies showed an enhanced export of thymocytes in T. cruzi-infected mice, as ascertained by intrathymic injection of FITC alone or in combination with TNF-α. The increase of immature CD4+CD8+ T cells in secondary lymphoid organs was even more clear-cut when TNF-α was co-injected with FITC. Ex-vivo transmigration assays also revealed higher number of migrating cells when TNF-α was added onto fibronectin lattices, with higher input of all thymocyte subsets, including immature CD4+CD8+. Infected animals also exhibit enhanced levels of expression of both mRNA TNF-α receptors in the CD4+CD8+ subpopulation. Our findings suggest that in T. cruzi acute infection, when TNF-α is complexed with fibronectin, it favours the altered migration of thymocytes, promoting the release of mature and immature T cells to different compartments of the immune system. Conceptually, this work reinforces the notion that thymocyte migration is a multivectorial biological event in health and disease, and that TNF-α is a further player in the process
Application of Proteomics and Peptidomics to COPD
Chronic obstructive pulmonary disease (COPD) is a complex disorder involving both airways and lung parenchyma, usually associated with progressive and poorly reversible airflow limitation. In order to better characterize the phenotypic heterogeneity and the prognosis of patients with COPD, there is currently an urgent need for discovery and validation of reliable disease biomarkers. Within this context, proteomic and peptidomic techniques are emerging as very valuable tools that can be applied to both systemic and pulmonary samples, including peripheral blood, induced sputum, exhaled breath condensate, bronchoalveolar lavage fluid, and lung tissues. Identification of COPD biomarkers by means of proteomic and peptidomic approaches can thus also lead to discovery of new molecular targets potentially useful to improve and personalize the therapeutic management of this widespread respiratory disease
Frailty trajectories in ICU survivors: A comparison between the clinical frailty scale and the Tilburg frailty Indicator and association with 1 year mortality
Purpose: To test the agreement of the Clinical Frailty Scale (CFS) and the Tilburg Frailty Indicator (TFI), their association with 3, 6 months and 1-year mortality and the trajectory of frailty in a mixed population of ICU survivors. Material and methods: This is a prospective, multicenter, longitudinal study on ICU survivors ≥18 years old with an ICU stay >72 h. For each patient, sociodemographic and clinical data were collected. Frailty was assessed during ICU stay and at 3, 6, 12 months after ICU discharge, through both CFS and TFI. Results: 124 patients with a mean age of 66 years old were enrolled. The baseline prevalence of frailty was 15.3% by CFS and 44.4% by TFI. Baseline CFS and TFI correlated but showed low agreement (Cohen's K = 0.23, p < 0.001). Baseline CFS score, but not TFI, was significantly associated to 1 year mortality. Moreover, CFS score during the follow-up was independently associated 1-year mortality (OR = 1.43; 95% CI: 1.18-1.73). Conclusions: CFS and TFI identify different populations of frail ICU survivors. Frail patients before ICU according to CFS have a significantly higher mortality after ICU discharge. The CFS during follow-up is an independent negative prognostic factor of long-term mortality in the ICU population
Trans-sialidase from Trypanosoma cruzi enhances the adhesion properties and fibronectin-driven migration of thymocytes
In experimental Trypanosoma cruzi infections, severe thymic atrophy leads to release of activated CD4+CD8+ double-positive (DP) T cells to the periphery. In humans, activated DP T cells are found in the blood in association with severe cardiac forms of human chronic Chagas disease. The mechanisms underlying the premature thymocyte release during the chagasic thymic atrophy remain elusive. We tested whether the migratory properties of intrathymic thymocytes are modulated by the parasite trans-sialidase (TS). We found that TS affected the dynamics of thymocytes undergoing intrathymic maturation, and these changes were accompanied by an increase in the number of recent DP thymic emigrants in the peripheral lymphoid organs. We demonstrated that increased percentages of blood DP T cell subsets were associated with augmented antibody titers against TS in chagasic patients with chronic cardiomyopathy. In vitro studies showed that TS was able to activate the MAPK pathway and actin filament mobilization in thymocytes. These effects were correlated with its ability to modulate the adhesion of thymocytes to thymic epithelial cells and their migration toward extracellular matrix. These findings point to effects of TS that could influence the escape of immature thymocytes in Chagas disease.Fil: Nardy, Ana Flávia F.R.. Universidade Federal do Rio de Janeiro; BrasilFil: Silva Filho, Joao Luiz da. Universidade Federal do Rio de Janeiro; BrasilFil: Perez, Ana Rosa. Universidad Nacional de Rosario. Facultad de Ciencias Médicas. Instituto de Inmunología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Meis, Juliana de. Instituto Oswaldo Cruz; BrasilFil: Farias de Oliveira, Désio Aurélio. Instituto Oswaldo Cruz; BrasilFil: Penha, Luciana. Universidade Federal do Rio de Janeiro; BrasilFil: Oliveira, Isadora de Araújo. Universidade Federal do Rio de Janeiro; BrasilFil: Dias, Wagner B.. Universidade Federal do Rio de Janeiro; BrasilFil: Todeschini, Adriane. Universidade Federal do Rio de Janeiro; BrasilFil: Freire de Lima, Célio Geraldo. Universidade Federal do Rio de Janeiro; BrasilFil: Bellio, Maria. Universidade Federal do Rio de Janeiro; BrasilFil: Caruso Neves, Celso. Universidade Federal do Rio de Janeiro; BrasilFil: Pinheiro, Ana Acácia. Universidade Federal do Rio de Janeiro; BrasilFil: Takiya, Christina Maeda. Universidade Federal do Rio de Janeiro; BrasilFil: Bottasso, Oscar Adelmo. Universidad Nacional de Rosario. Facultad de Ciencias Médicas. Instituto de Inmunología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Savino, Wilson. Instituto Oswaldo Cruz; BrasilFil: Morrot, Alexandre. Universidade Federal do Rio de Janeiro; Brasi
- …