687 research outputs found

    Relativistic description of asymmetric fully heavy tetraquarks in the diquark-antidiquark model

    Full text link
    Masses of the ground, orbitally and radially excited states of the asymmetric fully heavy tetraquarks, composed of charm (c) and bottom (b) quarks and antiquarks are calculated in the relativistic diquark-antidiquark picture. The relativistic quark model based on the quasipotential approach and quantum chromodynamics is used to construct the quasipotentials of the quark-quark and diquark-antidiquark interactions. These quasipotentials consist of the short-range one-gluon exchange and long-distance linear confinement interactions. Relativistic effects are consistently taken into account. A tetraquark is considered as a bound state of a diquark and an antidiquark which are treated as a spatially extended colored objects and interact as a whole. It is shown that most of the investigated tetraquarks states (including all ground states) lie above the fall-apart strong decay thresholds into a meson pair. As a result they can be observed as wide resonances. Nevertheless, several orbitally excited states lie slightly above or even below these fall-apart thresholds, thus they could be narrow states.Comment: 24 pages, 1 figur

    Quantum geometrodynamics of the Bianchi IX model in extended phase space

    Get PDF
    A way of constructing mathematically correct quantum geometrodynamics of a closed universe is presented. The resulting theory appears to be gauge-noninvariant and thus consistent with the observation conditions of a closed universe, by that being considerably distinguished from the conventional Wheeler - DeWitt one. For the Bianchi-IX cosmological model it is shown that a normalizable wave function of the Universe depends on time, allows the standard probability interpretation and satisfies a gauge-noninvariant dynamical Schrodinger equation. The Wheeler - DeWitt quantum geometrodynamics is represented by a singular, BRST-invariant solution to the Schrodinger equation having no property of normalizability.Comment: LaTeX, 18 pages, to be published in Int. J. Mod. Phys.

    Π ΠΎΠ·Ρ€ΠΎΠ±ΠΊΠ° Ρ‚Π° валідація Π“Π Π₯/ΠŸΠ†Π”- Ρ‚Π° Π“Π Π₯/МБ-ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ визначСння сСкнідазолу ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π΄ΠΎΠ±Π°Π²ΠΎΠΊ

    Get PDF
    Gas-liquid chromatography is widely used in the process of forensic toxicological examinations, but data about application of GLC with flame-ionization and mass-spectrometry detection for secnidazole determination in analytical toxicology are absent.Aim. To develop GLC/FID- and GLC/MS-procedures for the quantitative determination of secnidazole and carry out step-by-step validation of the procedures developed in the variant of the method of additions.Results and discussion. The chromatographic conditions has been chosen for secnidazole determination by the method of GLC in two variants of performance with flame-ionization and mass-spectrometry detection with the temperature program changing during the analysis from 70 Β°C to 250 Β°C or 320 Β°C. Retention times for secnidazole are 8.97 min and 11.74 min. To prove the possibility of application of the procedures proposed in further analysis their validation has been carried out in the variant of the method of additions. Such validation parameters as in-process stability, linearity, accuracy and precision have been estimated by model solutions.Experimental part. The GLC/FID-analysis: HP 6890 Hewlett Packard; НР-1 ΓΈ0.32 mm Γ— 30 m, 0.25 ΞΌm; thermostat – 70 ΒΊΠ‘ (3 min), 40 ΒΊΠ‘/min to 180 ΒΊΠ‘ (2 min), 40 ΒΊΠ‘/min to 250 ΒΊΠ‘ (3 min); injector – 280 ΒΊΠ‘; detector – 280 ΒΊΠ‘; volume rate of a carrier gas (helium) – 1.5 ml/min; split mode – 1 : 2. The GLC/MS-analysis: Agilent 6890N/5973N/7683; НР-5MS ΓΈ0.25 mm Γ— 30 m, 0.25 ΞΌm; DB-17MS ΓΈ0.25 mm Γ— 30 m, 0.15 ΞΌm; columns are connected sequentially through Deans switch; thermostat – 70 ΒΊΠ‘ (2 min), 45 ΒΊΠ‘/min. to 210 ΒΊΠ‘, 6 ΒΊΠ‘/min to 320 ΒΊΠ‘ (12.56 min); transfer line – 280 ΒΊΠ‘; ion source – 230 ΒΊΠ‘; quadrupole – 150 ΒΊΠ‘; electron impact – 70eV; 40-750 m/z; injector – 250 ΒΊΠ‘; splitless mode; inlet carrier gas (helium) pressure: 1st column – 26.06 psi, 2nd column – 19.30 psi.Conclusions. New procedures for the quantitative determination of secnidazole by the method of GLC/FID and GLC/MS have been developed. Their validation has been carried out, and acceptability for application has been shown.Π“Π°Π·ΠΎ-Тидкостная хроматография ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Π² судСбно-токсикологичСских исслСдованиях, Π½ΠΎ Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ Π΅Ρ‘ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ с ΠΏΠ»Π°ΠΌΠ΅Π½Π½ΠΎ-ΠΈΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΈ масс-спСктромСтричСской Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠ΅ΠΉ для опрСдСлСния сСкнидазола Π² аналитичСской токсикологии ΠΎΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚.ЦСль. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ Π“Π–Π₯/ΠŸΠ˜Π”- ΠΈ Π“Π–Π₯/МБ-ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ количСствСнного опрСдСлСния сСкнидазола ΠΈ провСсти ΠΏΠΎΡΡ‚Π°ΠΏΠ½ΡƒΡŽ Π²Π°Π»ΠΈΠ΄Π°Ρ†ΠΈΡŽ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ Π² Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π΄ΠΎΠ±Π°Π²ΠΎΠΊ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π₯роматографичСскиС условия Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ΄ΠΎΠ±Ρ€Π°Π½Ρ‹ для опрСдСлСния сСнидазола ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π“Π–Π₯ Π² Π΄Π²ΡƒΡ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π°Ρ… исполнСния с использованиСм ΠΏΠ»Π°ΠΌΠ΅Π½Π½ΠΎ-ΠΈΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΈ масс-спСктромСтричСской Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ с ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΡƒΠ΅ΠΌΡ‹ΠΌ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΏΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ ΠΎΡ‚ 70 Β°Π‘ Π΄ΠΎ 250 Β°Π‘ ΠΈΠ»ΠΈ 320 Β°Π‘. ВрСмя удСрТивания для сСкнидазола составляСт 8,97 ΠΌΠΈΠ½ ΠΈ 11,74 ΠΌΠΈΠ½. Для Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° возмоТности примСнСния ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΡ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ Π² дальнСйшСм Π°Π½Π°Π»ΠΈΠ·Π΅ Π±Ρ‹Π»Π° ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΈΡ… валидация Π² Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π΄ΠΎΠ±Π°Π²ΠΎΠΊ. Π’Π°ΠΊΠΈΠ΅ Π²Π°Π»ΠΈΠ΄Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹, ΠΊΠ°ΠΊ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ, Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΡΡ‚ΡŒ, ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΈ ΠΏΡ€Π΅Ρ†ΠΈΠ·ΠΈΠΎΠ½Π½ΠΎΡΡ‚ΡŒ Π±Ρ‹Π»ΠΈ ΠΎΡ†Π΅Π½Π΅Π½Ρ‹ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½Ρ‹Ρ… растворов.Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ Ρ‡Π°ΡΡ‚ΡŒ. Π“Π–Π₯/ΠŸΠ˜Π”-Π°Π½Π°Π»ΠΈΠ·: HP 6890 Hewlett Packard; НР-1 ΓΈ0,32 ΠΌΠΌ Γ— 30 ΠΌ, 0,25 ΠΌΠΊΠΌ; тСрмостат – 70 ΒΊΠ‘ (3 ΠΌΠΈΠ½), 40 ΒΊΠ‘/ΠΌΠΈΠ½ Π΄ΠΎ 180 ΒΊΠ‘ (2 ΠΌΠΈΠ½), 40 ΒΊΠ‘/ΠΌΠΈΠ½ Π΄ΠΎ 250 ΒΊΠ‘ (3 ΠΌΠΈΠ½); ΠΈΠ½ΠΆΠ΅ΠΊΡ‚ΠΎΡ€ – 280 ΒΊΠ‘; Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€ – 280 ΒΊΠ‘; объСмная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π³Π°Π·Π°-носитСля (гСлия) – 1,5 ΠΌΠ»/ΠΌΠΈΠ½; Ρ€Π°Π·Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΡ‚ΠΎΠΊΠ° – 1 : 2. Π“Π–Π₯/МБ-Π°Π½Π°Π»ΠΈΠ·: Agilent 6890N/5973N/7683; НР-5МБ ΓΈ0,25 ΠΌΠΌ Γ— 30 ΠΌ, 0,25 ΠΌΠΊΠΌ; DB-17MS ΓΈ0,25 ΠΌΠΌ Γ— 30 ΠΌ, 0,15 ΠΌΠΊΠΌ; ΠΊΠΎΠ»ΠΎΠ½ΠΊΠΈ ΠΏΠΎΠ΄ΠΊΠ»ΡŽΡ‡Π΅Π½Ρ‹ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Ρ‡Π΅Ρ€Π΅Π· ΠΏΠ΅Ρ€Π΅ΠΊΠ»ΡŽΡ‡Π°Ρ‚Π΅Π»ΡŒ Π”ΠΈΠ½Π°; тСрмостат – 70 ΒΊΠ‘ (2 ΠΌΠΈΠ½), 45 ΒΊΠ‘/ΠΌΠΈΠ½ Π΄ΠΎ 210 ΒΊΠ‘, 6 ΒΊΠ‘/ΠΌΠΈΠ½ Π΄ΠΎ 320 ΒΊΠ‘ (12,56 ΠΌΠΈΠ½); интСрфСйс масс-спСктромСтра – 280 ΒΊΠ‘; источник ΠΈΠΎΠ½ΠΎΠ² – 230 ΒΊΠ‘; ΠΊΠ²Π°Π΄Ρ€ΡƒΠΏΠΎΠ»ΡŒ – 150 ΒΊΠ‘; элСктронный ΡƒΠ΄Π°Ρ€ – 70 эВ; 40-750 m/z; ΠΈΠ½ΠΆΠ΅ΠΊΡ‚ΠΎΡ€ – 250 ΒΊΠ‘; Π±Π΅Π· раздСлСния ΠΏΠΎΡ‚ΠΎΠΊΠ°; Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ Π³Π°Π·Π°-носитСля (гСлия) Π½Π° Π²Ρ…ΠΎΠ΄Π΅: 1-я ΠΊΠΎΠ»ΠΎΠ½ΠΊΠ° – 26,06 psi, 2-я ΠΊΠΎΠ»ΠΎΠ½ΠΊΠ° – 19,30 psi.Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ Π½ΠΎΠ²Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ количСствСнного опрСдСлСния сСкнидазола ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ Π“Π–Π₯/ΠŸΠ˜Π” ΠΈ Π“Π–Π₯/МБ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΈΡ… валидация ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½Π° ΠΏΡ€ΠΈΠ΅ΠΌΠ»Π΅ΠΌΠΎΡΡ‚ΡŒ для примСнСния.Π“Π°Π·ΠΎ-Ρ€Ρ–Π΄ΠΈΠ½Π½Π° хроматографія ΡˆΠΈΡ€ΠΎΠΊΠΎ Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡ”Ρ‚ΡŒΡΡ Π² судово-токсикологічних дослідТСннях, Π°Π»Π΅ Π΄Π°Π½Ρ– ΠΏΡ€ΠΎ застосування Π“Π Π₯ Π· полум’яно-Ρ–ΠΎΠ½Ρ–Π·Π°Ρ†Ρ–ΠΉΠ½ΠΈΠΌ Ρ– мас-спСктромСтричним дСтСктуванням для визначСння сСкнідазолу Π² Π°Π½Π°Π»Ρ–Ρ‚ΠΈΡ‡Π½Ρ–ΠΉ токсикології відсутні.ΠœΠ΅Ρ‚Π°. Π ΠΎΠ·Ρ€ΠΎΠ±ΠΈΡ‚ΠΈ Π“Π Π₯/ΠŸΠ†Π”- Ρ– Π“Π Π₯/МБ-ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΊΡ–Π»ΡŒΠΊΡ–ΡΠ½ΠΎΠ³ΠΎ визначСння сСкнідазолу Ρ‚Π° провСсти ΠΏΠΎΠ΅Ρ‚Π°ΠΏΠ½Ρƒ Π²Π°Π»Ρ–Π΄Π°Ρ†Ρ–ΡŽ Ρ€ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ Ρƒ Π²Π°Ρ€Ρ–Π°Π½Ρ‚Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Π΄ΠΎΠ±Π°Π²ΠΎΠΊ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Ρ‚Π° Ρ—Ρ… обговорСння. Π₯Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„Ρ–Ρ‡Π½Ρ– ΡƒΠΌΠΎΠ²ΠΈ Π±ΡƒΠ»ΠΈ ΠΏΡ–Π΄Ρ–Π±Ρ€Π°Π½Ρ– для визначСння сСкнідазолу ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π“Π Π₯ Ρƒ Π΄Π²ΠΎΡ… Π²Π°Ρ€Ρ–Π°Π½Ρ‚Π°Ρ… виконання Π· використанням полум’яно-Ρ–ΠΎΠ½Ρ–Π·Π°Ρ†Ρ–ΠΉΠ½ΠΎΠ³ΠΎ Ρ– мас-спСктромСтричного дСтСктування Π· ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΎΠ²Π°Π½ΠΎΡŽ Π·ΠΌΡ–Π½ΠΎΡŽ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ ΠΏΡ€ΠΈ Π°Π½Π°Π»Ρ–Π·Ρ– Π²Ρ–Π΄ 70 Β°Π‘ Π΄ΠΎ 250 Β°Π‘ Π°Π±ΠΎ 320 Β°Π‘. Час утримування для сСкнідазолу ΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ 8,97 Ρ…Π² Ρ– 11,74 Ρ…Π². Для Π΄ΠΎΠΊΠ°Π·Ρƒ моТливості застосування ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ Ρƒ ΠΏΠΎΠ΄Π°Π»ΡŒΡˆΠΎΠΌΡƒ Π°Π½Π°Π»Ρ–Π·Ρ– Π±ΡƒΠ»ΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Ρ—Ρ… Π²Π°Π»Ρ–Π΄Π°Ρ†Ρ–ΡŽ Ρƒ Π²Π°Ρ€Ρ–Π°Π½Ρ‚Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Π΄ΠΎΠ±Π°Π²ΠΎΠΊ. Π’Π°ΠΊΡ– Π²Π°Π»Ρ–Π΄Π°Ρ†Ρ–ΠΉΠ½Ρ– ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈ, як ΡΡ‚Π°Π±Ρ–Π»ΡŒΠ½Ρ–ΡΡ‚ΡŒ, Π»Ρ–Π½Ρ–ΠΉΠ½Ρ–ΡΡ‚ΡŒ, ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ–ΡΡ‚ΡŒ Ρ– ΠΏΡ€Π΅Ρ†ΠΈΠ·Ρ–ΠΉΠ½Ρ–ΡΡ‚ΡŒ Π±ΡƒΠ»ΠΈ ΠΎΡ†Ρ–Π½Π΅Π½Ρ– Π·Π° допомогою ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½ΠΈΡ… Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Ρ–Π².Π•ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π° частина. Π“Π Π₯/ΠŸΠ†Π”-Π°Π½Π°Π»Ρ–Π·: HP 6890 Hewlett Packard; НР-1 ΓΈ0,32 ΠΌΠΌ Γ—Β 30 ΠΌ, 0,25 ΠΌΠΊΠΌ; тСрмостат – 70 ΒΊΠ‘ (3 Ρ…Π²), 40 ΒΊΠ‘/Ρ…Π² Π΄ΠΎ 180 ΒΊΠ‘ (2 Ρ…Π²), 40ΒΊΠ‘/Ρ…Π² Π΄ΠΎ 250 ΒΊΠ‘ (3 Ρ…Π²); Ρ–Π½ΠΆΠ΅ΠΊΡ‚ΠΎΡ€ – 280 ΒΊΠ‘; Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€ – 280 ΒΊΠ‘; об’ємна ΡˆΠ²ΠΈΠ΄ΠΊΡ–ΡΡ‚ΡŒ Π³Π°Π·Ρƒ-носія (Π³Π΅Π»Ρ–ΡŽ) – 1,5 ΠΌΠ»/Ρ…Π²; розділСння ΠΏΠΎΡ‚ΠΎΠΊΡƒ – 1 : 2. Π“Π Π₯/МБ-Π°Π½Π°Π»Ρ–Π·: Agilent 6890N/5973N/7683; НР-5МБ ΓΈ0,25 ΠΌΠΌ Γ—30 ΠΌ, 0,25 ΠΌΠΊΠΌ; DB-17MS ΓΈ0,25 ΠΌΠΌ Γ—30 ΠΌ, 0,15 ΠΌΠΊΠΌ; ΠΊΠΎΠ»ΠΎΠ½ΠΊΠΈ ΠΏΡ–Π΄ΠΊΠ»ΡŽΡ‡Π΅Π½Ρ– послідовно Ρ‡Π΅Ρ€Π΅Π· ΠΏΠ΅Ρ€Π΅ΠΌΠΈΠΊΠ°Ρ‡ Π”Ρ–Π½Π°; тСрмостат – 70 ΒΊΠ‘ (2 Ρ…Π²), 45 ΒΊΠ‘/Ρ…Π² Π΄ΠΎ 210 ΒΊΠ‘, 6 ΒΊΠ‘/Ρ…Π² Π΄ΠΎ 320Β ΒΊΠ‘ (12,56 Ρ…Π²); інтСрфСйс мас-спСктромСтра – 280 ΒΊΠ‘; Π΄ΠΆΠ΅Ρ€Π΅Π»ΠΎ Ρ–ΠΎΠ½Ρ–Π² – 230 ΒΊΠ‘; ΠΊΠ²Π°Π΄Ρ€ΡƒΠΏΠΎΠ»ΡŒ – 150 ΒΊΠ‘; Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΈΠΉ ΡƒΠ΄Π°Ρ€ – 70 Π΅Π’; 40-750 m/z; Ρ–Π½ΠΆΠ΅ΠΊΡ‚ΠΎΡ€ – 250 ΒΊΠ‘; Π±Π΅Π· розділСння ΠΏΠΎΡ‚ΠΎΠΊΡƒ; тиск Π³Π°Π·Ρƒ-носія (Π³Π΅Π»Ρ–ΡŽ) Π½Π° Π²Ρ…ΠΎΠ΄Ρ–: 1-Π° ΠΊΠΎΠ»ΠΎΠ½ΠΊΠ° – 26,06 psi, 2-Π° ΠΊΠΎΠ»ΠΎΠ½ΠΊΠ° – 19,30 psi.Висновки. Π ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½Ρ– Π½ΠΎΠ²Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΊΡ–Π»ΡŒΠΊΡ–ΡΠ½ΠΎΠ³ΠΎ визначСння сСкнідазолу ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ Π“Π Π₯/ΠŸΠ†Π” Ρ– Π“Π Π₯/МБ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Ρ—Ρ… Π²Π°Π»Ρ–Π΄Π°Ρ†Ρ–ΡŽ Ρ– ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ ΠΏΡ€ΠΈΠΉΠ½ΡΡ‚Π½Ρ–ΡΡ‚ΡŒ для застосування

    ΠœΠ΅Ρ‚ΠΎΠ΄ ΠΌΠΎΠ½Ρ–Ρ‚ΠΎΡ€ΠΈΠ½Π³Ρƒ Ρ‚Π° управління сучасними ΠΊΠΎΠΌΠΏβ€™ΡŽΡ‚Π΅Ρ€Π½ΠΈΠΌΠΈ ΠΌΠ΅Ρ€Π΅ΠΆΠ°ΠΌΠΈ

    Get PDF
    The distributed architecture of monitoring and management systems based on the SNMP protocol, the MIB databases and the centralized architecture based on the SDN network concept and the Openflow protocol are considered. The advantage of centralized monitoring and control is the ability to form a holistic view of the network status, respectively, to calculate the global optimum control and load balancing. The disadvantage is the low resiliency of the network, the complexity of managing a large system. Monitoring and management of such a complex system is possible with the help of decentralization, the creation of a hierarchical structure, the use of heuristic or metaheuristic methods for optimizing large systems. A method with sliding a posteriori optimization, which allows to achieve the optimal number of hierarchy levels and the optimal number of devices on the same level, is proposed.РассмотрСны распрСдСлСнная Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Π° систСм ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° ΠΈ управлСния Π½Π° основС ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»Π° SNMP, Π±Π°Π· MIB ΠΈ цСнтрализованная Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Π° Π½Π° Π±Π°Π·Π΅ ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΠΈ сСти SDN ΠΈ ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»Π° Openflow. ΠŸΡ€Π΅ΠΈΠΌΡƒΡ‰Π΅ΡΡ‚Π²ΠΎΠΌ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° ΠΈ управлСния являСтся Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΡΡ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ цСлостноС прСдставлСниС ΠΎ состоянии сСти, соотвСтствСнно Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π³Π»ΠΎΠ±Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΎΠΏΡ‚ΠΈΠΌΡƒΠΌ управлСния ΠΈ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ балансировку Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ. НСдостатком являСтся низкая ΠΎΡ‚ΠΊΠ°Π·ΠΎΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ сСти, ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ управлСния большой систСмой. ΠœΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³ ΠΈ ΡƒΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Ρ‚Π°ΠΊΠΎΠΉ слоТной систСмой Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π΄Π΅Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ, создания иСрархичСской структуры, примСнСния эвристичСских ΠΈΠ»ΠΈ мСтаэвристичСских ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ Π±ΠΎΠ»ΡŒΡˆΠΈΡ… систСм. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ со ΡΠΊΠΎΠ»ΡŒΠ·ΡΡ‰Π΅ΠΉ апостСриорной ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ позволяСт Π΄ΠΎΡΡ‚ΠΈΡ‡ΡŒ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ количСства ΡƒΡ€ΠΎΠ²Π½Π΅ΠΉ ΠΈΠ΅Ρ€Π°Ρ€Ρ…ΠΈΠΈ ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ количСства устройств Π½Π° ΠΎΠ΄Π½ΠΎΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅.Розглянуто Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π»Π΅Π½Ρƒ Π°Ρ€Ρ…Ρ–Ρ‚Π΅ΠΊΡ‚ΡƒΡ€Ρƒ систСм ΠΌΠΎΠ½Ρ–Ρ‚ΠΎΡ€ΠΈΠ½Π³Ρƒ Ρ‚Π° управління Π½Π° основі ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»Ρƒ SNMP Ρ– Π±Π°Π· MIB Ρ‚Π° Ρ†Π΅Π½Ρ‚Ρ€Π°Π»Ρ–Π·ΠΎΠ²Π°Π½Ρƒ Π°Ρ€Ρ…Ρ–Ρ‚Π΅ΠΊΡ‚ΡƒΡ€Ρƒ Π½Π° Π±Π°Π·Ρ– ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†Ρ–Ρ— ΠΌΠ΅Ρ€Π΅ΠΆΡ– SDN Ρ– ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»Ρƒ Openflow. ΠŸΠ΅Ρ€Π΅Π²Π°Π³ΠΎΡŽ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»Ρ–Π·Π°Ρ†Ρ–Ρ— ΠΌΠΎΠ½Ρ–Ρ‚ΠΎΡ€ΠΈΠ½Π³Ρƒ Ρ‚Π° управління Ρ” ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ сформувати ціліснС уявлСння ΠΏΡ€ΠΎ стан ΠΌΠ΅Ρ€Π΅ΠΆΡ–, Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎ Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ²Π°Ρ‚ΠΈ глобальний ΠΎΠΏΡ‚ΠΈΠΌΡƒΠΌ управління Ρ– ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΠΈ балансування навантаТСння. НСдоліком Ρ” низька Π²Ρ–Π΄ΠΌΠΎΠ²ΠΎΡΡ‚Ρ–ΠΉΠΊΡ–ΡΡ‚ΡŒ ΠΌΠ΅Ρ€Π΅ΠΆΡ–, ΡΠΊΠ»Π°Π΄Π½Ρ–ΡΡ‚ΡŒ управління вСликою ΡΠΈΡΡ‚Π΅ΠΌΠΎΡŽ. ΠœΠΎΠ½Ρ–Ρ‚ΠΎΡ€ΠΈΠ½Π³ Ρ‚Π° управління Ρ‚Π°ΠΊΠΎΡŽ складною ΡΠΈΡΡ‚Π΅ΠΌΠΎΡŽ ΠΌΠΎΠΆΠ»ΠΈΠ²Π΅ Π·Π° допомогою Π΄Π΅Ρ†Π΅Π½Ρ‚Ρ€Π°Π»Ρ–Π·Π°Ρ†Ρ–Ρ—, створСння Ρ–Ρ”Ρ€Π°Ρ€Ρ…Ρ–Ρ‡Π½ΠΎΡ— структури, застосування Свристичних Π°Π±ΠΎ мСтаСвристичних ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π² ΠΎΠΏΡ‚ΠΈΠΌΡ–Π·Π°Ρ†Ρ–Ρ— Π²Π΅Π»ΠΈΠΊΠΈΡ… систСм. Π—Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π· ΠΊΠΎΠ²Π·Π°ΡŽΡ‡ΠΎΡŽ Π°ΠΏΠΎΡΡ‚Π΅Ρ€Ρ–ΠΎΡ€Π½ΠΎΡŽ ΠΎΠΏΡ‚ΠΈΠΌΡ–Π·Π°Ρ†Ρ–Ρ”ΡŽ, який дозволяє досягти ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΡ— ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– Ρ€Ρ–Π²Π½Ρ–Π² Ρ–Ρ”Ρ€Π°Ρ€Ρ…Ρ–Ρ— Ρ– ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΡ— ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– пристроїв Π½Π° ΠΎΠ΄Π½ΠΎΠΌΡƒ Ρ€Ρ–Π²Π½Ρ–

    Fully-heavy tetraquark spectroscopy in the relativistic quark model

    Full text link
    Masses of the ground and excited (1P, 2S, 1D, 2P, 3S) states of the fully-heavy tetraquarks, composed of charm (cc) and bottom (bb) quarks and antiquarks, are calculated in the diquark-antidiquark picture within the relativistic quark model based on the quasipotential approach and quantum chromodynamics. The quasipotentials of the quark-quark and diquark-antidiquark interactions are constructed similarly to the previous consideration of mesons and baryons. Relativistic effects are consistently taken into account. A tetraquark is considered as a bound state of a diquark and an antidiquark. The finite size of the diquark is taken into account, using the form factors of the diquark-gluon interaction. It is shown that most of the investigated states of tetraquarks lie above the decay thresholds into a meson pair, as a result they can be observed only as broad resonances. The narrow state X(6900) recently discovered in the di-J/ψJ/\psi production spectrum by the LHCb, CMS and ATLAS Collaborations corresponds to an excited state of the fully-charmed tetraquark. Other recently discovered exotic heavy resonances X(6200), X(6400), X(6600), X(7200), X(7300) can also be interpreted as the different excitations of the fully-charmed tetraquark.Comment: 36 pages, 2 figure

    Importance of serous intraepithelial ovarian tubal carcinomas in the occurrence of "high-grade" serous carcinomas and / or peritoneal serous carcinomas of unknown primary origin.

    Get PDF
    Studies of the recent decades on serous pelvic adenocarcinomas in women have set the goal of distinguishing between two diagnostic units: "low-grade" and "high-grade" carcinomas. The predecessor of the "low-grade" variant (type I) is considered to be a borderline serous tumor / atypical proliferative serous tumor (8442/1), which according to the International Classification of Diseases for Oncology ICD-OΒ 2013 of the female reproductive system refers to non-specific, borderline tumors and tumors with unpredictable clinical behavior. The predecessors of the β€œhigh-grade” variant (type II) are serous tubular intraepithelial carcinomas (in situ) or β€œhigh-grade” serous invasive tubal carcinomas, since they have the TP53 mutation identical to β€œhigh-grade” ovarian carcinoma, an aberrant p53 protein expression, high proliferative activity, and significant genomic instability. In addition, according to the carcinogenesis of "high-grade" serous ovarian carcinoma with metastases to the peritoneum, it can also be interpreted as "pelvic high-grade serous carcinoma". A retrospective analysis of the histological, morphometric and immunohistochemical characteristics of the biopsy material of 31 women aged from 28 to 76 years (mean 57.32Β±11.54; median 57), divided into 3 groups, was carried out. Group 1: 14 observations of the tubal epithelium (8 tubes without pathological changes (subgroup 1a) and 6 with signs of intraepithelial neoplasia (subgroup 1b); group 2: 12 cases of serous adenocarcinoma of the ovary of the β€œhigh-grade” variant; group 3: 6 metastatic peritoneal serous carcinoma without a known primary site. Results. Group immunophenotypes showed uniformity in the expression of markers CK7 (+, +/-), CK20 (-), WT-1 (+), CA125 (+, +/-), with an affinity to distal uterine tube fragments. The expression of p53 in all groups with signs of carcinomas (compared with the control subgroup 1a without atypia) was divided into two options - negative samples and samples with overexpression, where no statistically significant difference was found (p>0.05), which is possibly a single way of carcinogenesis. The morphometric study revealed a significant difference in the area of the nuclei between group 3 and the first three groups (1a, 1b, 2), which indicates the similarity of ovarian and tubal neoplasias and uterine tube epithelium. The number of intranuclear reactions with ER and PGR progressively decreased from group 1 to group 3, with an increase in cases with ER (+/-) / PGR (+/- or -) to 50% in group 3, which greatly complicated the diagnostic search for unknown carcinomas of primary localization. HER-2-new expression revealed a possible amplification (gradation 2 + / 3 +) only in group 2 at the level of 16.67% and in group 3 at the level of 33.33%

    Determination Methods Of Defrosted Protein-vegetable Mixtures Parameters Development

    Get PDF
    The aim of the work is to develop methods of investigating the influence of semolina and extruded semolina on quality and quantity parameters of mixtures with milk-protein concentrates in a cycle of freezing-defrost that allows to substantiate resource-saving in semi-products manufacturing.Obtained results of changes of the quality of protein-vegetable mixtures after the effect of negative temperatures confirm cryo-protective properties of carbohydrates of products of wheat processing.There were studied methods of extracting proteins of whey for getting albumin mass and using in the composition of milk-protein concentrates. It was established, that adding collagen-containing ingredients in amount 0,4 % for intensifying thermal coagulation of whey proteins decreases the duration of precipitation to (55Β±2) and (40Β±2) min respectively depending on a type of raw material processing. There were studied both native whey and protein concentrate, obtained by the method of ultra-filtration with mass share of dry substances (16Β±2) %.The method of thermal analysis determined a cryoscopic temperature of sour-milk fatless cheese and also albumin mass, obtained using Β«Collagen pro 4402Β». The calculation method, based on cryoscopic temperature indices determined an amount of moisture, frozen out in milk-whey mixtures with wheat processing products. The presented information is enough for estimating traditional modes of freezing milk-protein concentrates objectively.The obtained results of the studies indicate the effectiveness of the offered methods for determining parameters of protein-vegetable mixtures after defrosting. Measurements of quality parameters may be used for correcting mass losses of concentrates effectively

    Proliferation activity and hormonal status of atypical hyperplasia and endometrioid adenocarcinoma of the endometrium

    Get PDF
    Atypical hyperplasia of the endometrium is a precancerous condition for endometrioid adenocarcinoma of the endometrium, which is the largest group among malignant neoplasms of the uterine body, according to the Cancer Registry, the mortality rate from which took the 3rd place in 2021. The absence of specific clinical manifestations complicates diagnostics at the early stages of the process, which necessitates the study of histological and immunohistochemical criteria to verify the diagnosis. The aim of the study. To improve the differential diagnostic morphological and immunohistochemical criteria for the diagnosis of atypical hyperplasia and endometrioid adenocarcinoma of the endometrium, using the latest international classification data. Materials and methods. Retrospective analysis of 76 cases of postoperative material of women for the period from 2020 to 2022 with a diagnosis of β€œendometrioid adenocarcinoma of the endometrium” – 61 cases and β€œendometrial hyperplasia with atypia” – 15 included an assessment of histological, immunohistochemical features, followed by statistical processing of the obtained results. Results. The incidence of endometrioid adenocarcinoma of the endometrium and atypical endometrial hyperplasia occurs in the premenopausal and menopausal periods. The expression level of the Ki-67 marker is directly proportional to the degree of tumor malignancy (p < 0.05). Estrogen receptors decrease as the degree of tumor malignancy increases. Progesterone receptors are equally present in endometrioid adenocarcinomas and atypical endometrial hyperplasia (p < 0.05). Conclusions. The necessity of using the Ki-67 marker and determining the hormonal status in endometrioid adenocarcinomas of the endometrium and atypical hyperplasia of the endometrium is argued
    • …
    corecore