15,301 research outputs found
A Generalized Unimodality
Generalization of unimodality for random objects taking values in finite dimensional vector spac
Bayesian methods of astronomical source extraction
We present two new source extraction methods, based on Bayesian model
selection and using the Bayesian Information Criterion (BIC). The first is a
source detection filter, able to simultaneously detect point sources and
estimate the image background. The second is an advanced photometry technique,
which measures the flux, position (to sub-pixel accuracy), local background and
point spread function. We apply the source detection filter to simulated
Herschel-SPIRE data and show the filter's ability to both detect point sources
and also simultaneously estimate the image background. We use the photometry
method to analyse a simple simulated image containing a source of unknown flux,
position and point spread function; we not only accurately measure these
parameters, but also determine their uncertainties (using Markov-Chain Monte
Carlo sampling). The method also characterises the nature of the source
(distinguishing between a point source and extended source). We demonstrate the
effect of including additional prior knowledge. Prior knowledge of the point
spread function increase the precision of the flux measurement, while prior
knowledge of the background has onlya small impact. In the presence of higher
noise levels, we show that prior positional knowledge (such as might arise from
a strong detection in another waveband) allows us to accurately measure the
source flux even when the source is too faint to be detected directly. These
methods are incorporated in SUSSEXtractor, the source extraction pipeline for
the forthcoming Akari FIS far-infrared all-sky survey. They are also
implemented in a stand-alone, beta-version public tool that can be obtained at
http://astronomy.sussex.ac.uk/rss23/sourceMiner\_v0.1.2.0.tar.gzComment: Accepted for publication by ApJ (this version compiled used
emulateapj.cls
Calibration of the LIGO displacement actuators via laser frequency modulation
We present a frequency modulation technique for calibration of the
displacement actuators of the LIGO 4-km-long interferometric gravitational-wave
detectors. With the interferometer locked in a single-arm configuration, we
modulate the frequency of the laser light, creating an effective length
variation that we calibrate by measuring the amplitude of the frequency
modulation. By simultaneously driving the voice coil actuators that control the
length of the arm cavity, we calibrate the voice coil actuation coefficient
with an estimated 1-sigma uncertainty of less than one percent. This technique
enables a force-free, single-step actuator calibration using a displacement
fiducial that is fundamentally different from those employed in other
calibration methods.Comment: 10 pages, 5 figures, submitted to Classical and Quantum Gravit
Using Supra-Arcade Downflows as Probes of Electron Acceleration During Solar Flares
Extracting information from coronal features above flares has become more reliable with the availability of increasingly higher spatial and temporal-resolution data in recent decades. We are now able to sufficiently probe the region high above long-duration flaring active regions where reconnection is expected to be continually occurring. Flows in the supra-arcade region, first observed with Yohkoh/SXT, have been theorized to be associated with newly-reconnected outflowing loops. High resolution data appears to confirm these assertions. Assuming that these flows are indeed reconnection outflows, then the detection of those directed toward the solar surface (i.e. downflowing) should be associated with particle acceleration between the current sheet and the loop footpoints rooted in the chromosphere. RHESSI observations of highly energetic particles with respect to downflow detections could potentially constrain electron acceleration models. I will discuss measurements of these supra-arcade downflows (SADs) in relation to reconnection model parameters and present preliminary findings comparing the downflow timings with high-energy RHESSI lightcurves
Absorption Line Studies in the Halo
Significant progress has been made over the last few years to explore the
gaseous halo of the Milky Way by way of absorption spectroscopy. I review
recent results on absorption line studies in the halo using various
instruments, such as the Far Ultraviolet Spectroscopic Explorer, the Space
Telescope Imaging Spectrograph, and others. The new studies imply that the
infall of low-metallicity gas, the interaction with the Magellanic Clouds, and
the Galactic Fountain are responsible for the phenomenon of the intermediate-
and high-velocity clouds in the halo. New measurements of highly-ionized gas in
the vicinity of the Milky Way indicate that these clouds are embedded in a
corona of hot gas that extends deep into the intergalactic space.Comment: 7 pages, 1 figure; Invited review at the conference "How does the
Galaxy work ?", Granada/Spain, June 200
- …