88 research outputs found

    Detection of Ne VIII in the Low-Redshift Warm-Hot IGM

    Full text link
    High resolution FUSE and STIS observations of the bright QSO HE 0226-4110 (zem = 0.495) reveal the presence of a multi-phase absorption line system at zabs(O VI) = 0.20701 containing absorption from H I (Ly alpha to Ly theta), C III, O III, O IV, O VI, N III, Ne VIII, Si III, S VI and possibly S V. Single component fits to the Ne VIII and O VI absorption doublets yield logN(Ne VIII) = 13.89+/-0.11 and logN(O VI) = 14.37+/-0.03. The Ne VIII and O VI doublets are detected at 3.9 sigma and 16 sigma significance levels, respectively. This represents the first detection of intergalactic Ne VIII, a diagnostic of gas with temperature in the range from 5x10(5) to 1x10(6) K. The O VI and Ne VIII are not likely created in a low density medium photoionized solely by the extragalactic background at z = 0.2 since the required path length of ~11 Mpc implies the Hubble flow absorption line broadening would be ~10 times greater than the observed line widths. A collisional ionization origin is therefore more likely. Assuming [Ne/H] and [O/H] = -0.5, the value N(Ne VIII)/N(O VI) = 0.33+/-0.10 is consistent with gas in collisional ionization equilibrium near T=5.4x10(5) K with logN(H)= 19.9 and N(H)/N(H I) = 1.7x10(6). The observations support the basic idea that a substantial fraction of the baryonic matter at low redshift exists in hot very highly ionized gaseous structures.Comment: 32 pages text and 9 pages of figures. Accepted by the Astrophysical Journa

    A Survey of O VI, C III, and H I in Highly Ionized High-Velocity Clouds

    Full text link
    (ABRIDGED) We present a Far-Ultraviolet Spectroscopic Explorer survey of highly ionized high-velocity clouds (HVCs) in 66 extragalactic sight lines. We find a total of 63 high-velocity O VI absorbers, 16 with 21 cm-emitting H I counterparts and 47 ``highly ionized'' absorbers without 21 cm emission. 11 of these high-velocity O VI absorbers are positive-velocity wings (broad O VI features extending asymmetrically to velocities of up to 300 km/s). The highly ionized HVC population is characterized by =38+/-10 km/s and <log N_a(O VI)>=13.83+/-0.36. We find that 81% (30/37) of high-velocity O VI absorbers have clear accompanying C III absorption, and 76% (29/38) have accompanying H I absorption in the Lyman series. The lower average width of the high-velocity H I absorbers implies the H I lines arise in a separate, lower temperature phase than the O VI. We find that the shape of the wing profiles is well reproduced by a radiatively cooling, vertical outflow. However, the outflow has to be patchy and out of ionization equilibrium. An alternative model, consistent with the observations, is one where the highly ionized HVCs represent the low N(H I) tail of the HVC population, with the O VI formed at the interfaces around the embedded H I cores. Though we cannot rule out a Local Group explanation, we favor a Galactic origin. This is based on the recent evidence that both H I HVCs and the million-degree gas detected in X-ray absorption are Galactic phenomena. Since the highly ionized HVCs appear to trace the interface between these two Galactic phases, it follows that highly ionized HVCs are Galactic themselves. However, the non-detection of high-velocity O VI in halo star spectra implies that any Galactic high-velocity O VI exists at z-distances beyond a few kpc.Comment: 36 pages, 14 figures (3 in color), accepted to ApJS. Some figures downgraded to limit file siz

    Molecular Hydrogen in High-Velocity Clouds

    Get PDF
    We present Far Ultraviolet Spectroscopic Explorer (FUSE) observations of interstellar molecular hydrogen (H_2) in two Galactic high-velocity clouds (HVCs). Molecular hydrogen absorption is detected in the Magellanic Stream (abundance ~0.3 solar) toward the Seyfert galaxy Fairall 9 in the lowest three rotational states (J=0-2) at v(LSR)=+190 km/s, yielding a total H_2 column density of log N(H_2)=16.40(+0.26)(-0.53). In contrast, no H_2 absorption is seen in the high-velocity cloud Complex C (abundance ~0.1 solar) toward the quasar PG 1259+593 (log N(H_2)<13.96 at v(LSR)=-130 km/s) although both HVCs have similar HI column densities on the order of log N(HI)~20. Weak H_2 absorption is detected in the Intermediate-Velocity Arch (IV Arch; abundance \~1.0 solar) toward PG 1259+593 (log N(H_2)=14.10(+0.21)(-0.44) at v(LSR)=-55 km/s and log N(HI)=19.5). It thus appears that metal- and dust-poor halo clouds like Complex C are not able to form and maintain widely distributed H_2, whereas metal and dust-rich halo clouds like the IV Arch can maintain H_2 even at low HI column densities.Comment: 12 pages, 3 figures; Accepted for publication in ApJ Letter
    • …
    corecore