515 research outputs found
A systematic review and meta-analysis of environmental contaminant exposure impacts on weight loss and glucose regulation during calorie-restricted diets in preclinical studies:Persistent organic pollutants may impede glycemic control
Epidemiological evidence links chemical exposure with type 2 diabetes (T2DM) risk and prevalence. Chemical exposure may therefore also limit success of weight loss or restoration of glycemic control during calorie restricted diets. Few human studies examine this hypothesis. This systematic review and clustered meta-analysis examines preclinical evidence that exposure to anthropogenic environmental contaminants impedes weight loss and resumption of glycemic control during calorie restriction. Of five eligible papers from 212 unique citations, four used C57BL/6 mice and one used Sprague Dawley rats. In four the animals received high fat diets to induce obesity and impaired glycemic control. All examined persistent organic pollutants (POPs). Polychlorinated biphenyl (PCB) 77 exposure did not affect final mass (standardised mean difference (SMD) = -0.35 [-1.09, 0.39]; n = 5 (experiments); n = 3 (papers)), or response to insulin in insulin tolerance tests (SMD = -1.54 [-3.25, 0.16] n = 3 (experiments); n = 2 (papers)), but impaired glucose control in glucose tolerance tests (SMD = -1.30 [-1.96, -0.63]; n = 6 (experiments); n = 3 (papers)). The impaired glycemic control following perfluoro-octane sulphonic acid (PFOS) exposure and enhanced mass loss following dichlorodiphenyltrichloroethane (DDT) exposure have not been replicated. Animal studies thus suggest some chemical groups, especially PCB and PFOS, could impair glucose control management during calorie restriction, similar to conclusions from limited existing clinical studies. We discuss the research that is urgently required to inform weight management services that are now the mainstay prevention initiative for T2DM.</p
A systematic review and meta-analysis of environmental contaminant exposure impacts on weight loss and glucose regulation during calorie-restricted diets in preclinical studies:Persistent organic pollutants may impede glycemic control
Epidemiological evidence links chemical exposure with type 2 diabetes (T2DM) risk and prevalence. Chemical exposure may therefore also limit success of weight loss or restoration of glycemic control during calorie restricted diets. Few human studies examine this hypothesis. This systematic review and clustered meta-analysis examines preclinical evidence that exposure to anthropogenic environmental contaminants impedes weight loss and resumption of glycemic control during calorie restriction. Of five eligible papers from 212 unique citations, four used C57BL/6 mice and one used Sprague Dawley rats. In four the animals received high fat diets to induce obesity and impaired glycemic control. All examined persistent organic pollutants (POPs). Polychlorinated biphenyl (PCB) 77 exposure did not affect final mass (standardised mean difference (SMD) = -0.35 [-1.09, 0.39]; n = 5 (experiments); n = 3 (papers)), or response to insulin in insulin tolerance tests (SMD = -1.54 [-3.25, 0.16] n = 3 (experiments); n = 2 (papers)), but impaired glucose control in glucose tolerance tests (SMD = -1.30 [-1.96, -0.63]; n = 6 (experiments); n = 3 (papers)). The impaired glycemic control following perfluoro-octane sulphonic acid (PFOS) exposure and enhanced mass loss following dichlorodiphenyltrichloroethane (DDT) exposure have not been replicated. Animal studies thus suggest some chemical groups, especially PCB and PFOS, could impair glucose control management during calorie restriction, similar to conclusions from limited existing clinical studies. We discuss the research that is urgently required to inform weight management services that are now the mainstay prevention initiative for T2DM.</p
Characterisation of retrotransposon insertion polymorphisms in whole genome sequencing data from individuals with amyotrophic lateral sclerosis
The genetics of an individual is a crucial factor in understanding the risk of developing the neurodegenerative disease amyotrophic lateral sclerosis (ALS). There is still a large proportion of the heritability of ALS, particularly in sporadic cases, to be understood. Among others, active transposable elements drive inter-individual variability, and in humans long interspersed element 1 (LINE1, L1), Alu and SINE-VNTR-Alu (SVA) retrotransposons are a source of polymorphic insertions in the population. We undertook a pilot study to characterise the landscape of non-reference retrotransposon insertion polymorphisms (non-ref RIPs) in 15 control and 15 ALS individuals’ whole genomes from Project MinE, an international project to identify potential genetic causes of ALS. The combination of two bioinformatics tools (mobile element locator tool (MELT) and TEBreak) identified on average 1250 Alu, 232 L1 and 77 SVA non-ref RIPs per genome across the 30 analysed. Further PCR validation of individual polymorphic retrotransposon insertions showed a similar level of accuracy for MELT and TEBreak. Our preliminary study did not identify a specific RIP or a significant difference in the total number of non-ref RIPs in ALS compared to control genomes. The use of multiple bioinformatic tools improved the accuracy of non-ref RIP detection and our study highlights the potential importance of studying these elements further in ALS
Neutrino Interactions in Hot and Dense Matter
We study the charged and neutral current weak interaction rates relevant for
the determination of neutrino opacities in dense matter found in supernovae and
neutron stars. We establish an efficient formalism for calculating differential
cross sections and mean free paths for interacting, asymmetric nuclear matter
at arbitrary degeneracy. The formalism is valid for both charged and neutral
current reactions. Strong interaction corrections are incorporated through the
in-medium single particle energies at the relevant density and temperature. The
effects of strong interactions on the weak interaction rates are investigated
using both potential and effective field-theoretical models of matter. We
investigate the relative importance of charged and neutral currents for
different astrophysical situations, and also examine the influence of
strangeness-bearing hyperons. Our findings show that the mean free paths are
significantly altered by the effects of strong interactions and the
multi-component nature of dense matter. The opacities are then discussed in the
context of the evolution of the core of a protoneutron star.Comment: 41 pages, 25 figure
Search for Higgs bosons decaying to tautau pairs in ppbar collisions at sqrt(s) = 1.96 TeV
We present a search for the production of neutral Higgs bosons decaying into
tautau pairs in ppbar collisions at a center-of-mass energy of 1.96 TeV. The
data, corresponding to an integrated luminosity of 5.4 fb-1, were collected by
the D0 experiment at the Fermilab Tevatron Collider. We set upper limits at the
95% C.L. on the product of production cross section and branching ratio for a
scalar resonance decaying into tautau pairs, and we then interpret these limits
as limits on the production of Higgs bosons in the minimal supersymmetric
standard model (MSSM) and as constraints in the MSSM parameter space.Comment: 7 pages, 5 figures, submitted to PL
Measurement of the photon-jet production differential cross section in collisions at \sqrt{s}=1.96~\TeV
We present measurements of the differential cross section dsigma/dpT_gamma
for the inclusive production of a photon in association with a b-quark jet for
photons with rapidities |y_gamma|< 1.0 and 30<pT_gamma <300 GeV, as well as for
photons with 1.5<|y_gamma|< 2.5 and 30< pT_gamma <200 GeV, where pT_gamma is
the photon transverse momentum. The b-quark jets are required to have pT>15 GeV
and rapidity |y_jet| < 1.5. The results are based on data corresponding to an
integrated luminosity of 8.7 fb^-1, recorded with the D0 detector at the
Fermilab Tevatron Collider at sqrt(s)=1.96 TeV. The measured cross
sections are compared with next-to-leading order perturbative QCD calculations
using different sets of parton distribution functions as well as to predictions
based on the kT-factorization QCD approach, and those from the Sherpa and
Pythia Monte Carlo event generators.Comment: 10 pages, 9 figures, submitted to Phys. Lett.
Limits on anomalous trilinear gauge boson couplings from WW, WZ and Wgamma production in pp-bar collisions at sqrt{s}=1.96 TeV
We present final searches of the anomalous gammaWW and ZWW trilinear gauge
boson couplings from WW and WZ production using lepton plus dijet final states
and a combination with results from Wgamma, WW, and WZ production with leptonic
final states. The analyzed data correspond to up to 8.6/fb of integrated
luminosity collected by the D0 detector in pp-bar collisions at sqrt{s}=1.96
TeV. We set the most stringent limits at a hadron collider to date assuming two
different relations between the anomalous coupling parameters
Delta\kappa_\gamma, lambda, and Delta g_1^Z for a cutoff energy scale Lambda=2
TeV. The combined 68% C.L. limits are -0.057<Delta\kappa_\gamma<0.154,
-0.015<lambda<0.028, and -0.008<Delta g_1^Z<0.054 for the LEP parameterization,
and -0.007<Delta\kappa<0.081 and -0.017<lambda<0.028 for the equal couplings
parameterization. We also present the most stringent limits of the W boson
magnetic dipole and electric quadrupole moments.Comment: 10 pages, 5 figures, submitted to PL
Measurement of three-jet differential cross sections d sigma-3jet / d M-3jet in p anti-p collisions at sqrt(s)=1.96 TeV
We present the first measurement of the inclusive three-jet differential
cross section as a function of the invariant mass of the three jets with the
largest transverse momenta in an event in p anti-p collisions at sqrt(s) = 1.96
TeV. The measurement is made in different rapidity regions and for different
jet transverse momentum requirements and is based on a data set corresponding
to an integrated luminosity of 0.7 fb^{-1} collected with the D0 detector at
the Fermilab Tevatron Collider. The results are used to test the three-jet
matrix elements in perturbative QCD calculations at next-to-leading order in
the strong coupling constant. The data allow discrimination between
parametrizations of the parton distribution functions of the proton.Comment: 10 pages, 4 figures, 2 tables, submitted to Phys. Lett. B, corrected
chi2 values for NNPD
Search for pair production of the scalar top quark in muon+tau final states
We present a search for the pair production of scalar top quarks
(), the lightest supersymmetric partners of the top quarks, in
collisions at a center-of-mass energy of 1.96 TeV, using data
corresponding to an integrated luminosity of {7.3 } collected with the
\dzero experiment at the Fermilab Tevatron Collider. Each scalar top quark is
assumed to decay into a quark, a charged lepton, and a scalar neutrino
(). We investigate final states arising from and
. With no significant excess of events observed above the
background expected from the standard model, we set exclusion limits on this
production process in the (,) plane.Comment: Submitted to Phys. Lett.
Measurements of inclusive W+jets production rates as a function of jet transverse momentum in ppbar collisions at sqrt{s}=1.96 TeV
This Letter describes measurements of inclusive W (--> e nu) + n jet cross
sections (n = 1-4), presented as total inclusive cross sections and
differentially in the nth jet transverse momentum. The measurements are made
using data corresponding to an integrated luminosity of 4.2 fb-1 collected by
the D0 detector at the Fermilab Tevatron Collider, and achieve considerably
smaller uncertainties on W +jets production cross sections than previous
measurements. The measurements are compared to next-to-leading order
perturbative QCD (pQCD) calculations in the n =1-3 jet multiplicity bins and to
leading order pQCD calculations in the 4-jet bin. The measurements are
generally in agreement with pQCD predictions, although certain regions of phase
space are identified where the calculations could be improved
- …