1,132 research outputs found

    A Unified Theoretical Description of the Thermodynamical Properties of Spin Crossover with Magnetic Interactions

    Full text link
    After the discovery of the phenomena of light-induced excited spin state trapping (LIESST), the functional properties of metal complexes have been studied intensively. Among them, cooperative phenomena involving low spin-high spin (spin-crossover) transition and magnetic ordering have attracted interests, and it has become necessary to formulate a unified description of both phenomena. In this work, we propose a model in which they can be treated simultaneously by extending the Wajnflasz-Pick model including a magnetic interaction. We found that this new model is equivalent to Blume-Emery-Griffiths (BEG) Hamiltonian with degenerate levels. This model provides a unified description of the thermodynamic properties associated with various types of systems, such as spin-crossover (SC) solids and Prussian blue analogues (PBA). Here, the high spin fraction and the magnetization are the order parameters describing the cooperative phenomena of the model. We present several typical temperature dependences of the order parameters and we determine the phase diagram of the system using the mean-field theory and Monte Carlo simulations. We found that the magnetic interaction drives the SC transition leading to re-entrant magnetic and first-order SC transitions.Comment: 30pages, 11figure

    Ruthenium polypyridyl complexes and their modes of interaction with DNA : is there a correlation between these interactions and the antitumor activity of the compounds?

    Get PDF
    Various interaction modes between a group of six ruthenium polypyridyl complexes and DNA have been studied using a number of spectroscopic techniques. Five mononuclear species were selected with formula [Ru(tpy) L1L2](2-n)?, and one closely related dinuclear cation of formula [{Ru(apy)(tpy)}2{l-H2N(CH2)6NH2}]4?. The ligand tpy is 2,20:60,200-terpyridine and the ligand L1 is a bidentate ligand, namely, apy (2,20-azobispyridine), 2-phenylazopyridine, or 2-phenylpyridinylmethylene amine. The ligand L2 is a labile monodentate ligand, being Cl-, H2O, or CH3CN. All six species containing a labile L2 were found to be able to coordinate to the DNA model base 9-ethylguanine by 1H NMR and mass spectrometry. The dinuclear cationic species, which has no positions available for coordination to a DNA base, was studied for comparison purposes. The interactions between a selection of four representative complexes and calf-thymus DNA were studied by circular and linear dichroism. To explore a possible relation between DNA-binding ability and toxicity, all compounds were screened for anticancer activity in a variety of cancer cell lines, showing in some cases an activity which is comparable to that of cisplatin. Comparison of the details of the compound structures, their DNA binding, and their toxicity allows the exploration of structure–activity relationships that might be used to guide optimization of the activity of agents of this class of compounds

    In-beam fast-timing measurements in 103,105,107Cd

    Full text link
    Fast-timing measurements were performed recently in the region of the medium-mass 103,105,107Cd isotopes, produced in fusion evaporation reactions. Emitted gamma-rays were detected by eight HPGe and five LaBr3:Ce detectors working in coincidence. Results on new and re-evaluated half-lives are discussed within a systematic of transition rates. The 7/21+7/2_1^+ states in 103,105,107Cd are interpreted as arising from a single-particle excitation. The half-life analysis of the 11/2111/2_1^- states in 103,105,107Cd shows no change in the single-particle transition strength as a function of the neutron number

    Depth-resolved microscopy of cortical hemodynamics with optical coherence tomography

    Get PDF
    We describe depth-resolved microscopy of cortical hemodynamics with high-speed spectral/Fourier domain optical coherence tomography (OCT). Stimulus-evoked changes in blood vessel diameter, flow, and total hemoglobin were measured in the rat somatosensory cortex. The results show OCT measurements of hemodynamic changes during functional activation and represent an important step toward understanding functional hyperemia at the microscopic level.National Institutes of Health (U.S.) (R01-NS057476)National Institutes of Health (U.S.) (P01NS055104)National Institutes of Health (U.S.) (P50NS010828)National Institutes of Health (U.S.) (K99NS067050)National Institutes of Health (U.S.) (R01-CA075289-12)United States. Air Force Office of Scientific Research (FA9550-07-1-0014)United States. Dept. of Defense. Medical Free Electron Laser Program (FA9550-07-1-0101

    Organoiridium complexes : anticancer agents and catalysts

    Get PDF
    Iridium is a relatively rare precious heavy metal, only slightly less dense than osmium. Researchers have long recognized the catalytic properties of square-planar Ir(I) complexes, such as Crabtree's hydrogenation catalyst, an organometallic complex with cyclooctadiene, phosphane, and pyridine ligands. More recently, chemists have developed half-sandwich pseudo-octahedral pentamethylcyclopentadienyl Ir(III) complexes containing diamine ligands that efficiently catalyze transfer hydrogenation reactions of ketones and aldehydes in water using H2 or formate as the hydrogen source. Although sometimes assumed to be chemically inert, the reactivity of low-spin 5d(6) Ir(III) centers is highly dependent on the set of ligands. Cp* complexes with strong σ-donor C^C-chelating ligands can even stabilize Ir(IV) and catalyze the oxidation of water. In comparison with well developed Ir catalysts, Ir-based pharmaceuticals are still in their infancy. In this Account, we review recent developments in organoiridium complexes as both catalysts and anticancer agents. Initial studies of anticancer activity with organoiridium complexes focused on square-planar Ir(I) complexes because of their structural and electronic similarity to Pt(II) anticancer complexes such as cisplatin. Recently, researchers have studied half-sandwich Ir(III) anticancer complexes. These complexes with the formula [(Cp(x))Ir(L^L')Z](0/n+) (with Cp* or extended Cp* and L^L' = chelated C^N or N^N ligands) have a much greater potency (nanomolar) toward a range of cancer cells (especially leukemia, colon cancer, breast cancer, prostate cancer, and melanoma) than cisplatin. Their mechanism of action may involve both an attack on DNA and a perturbation of the redox status of cells. Some of these complexes can form Ir(III)-hydride complexes using coenzyme NAD(P)H as a source of hydride to catalyze the generation of H2 or the reduction of quinones to semiquinones. Intriguingly, relatively unreactive organoiridium complexes containing an imine as a monodentate ligand have prooxidant activity, which appears to involve catalytic hydride transfer to oxygen and the generation of hydrogen peroxide in cells. In addition, researchers have designed inert Ir(III) complexes as potent kinase inhibitors. Octahedral cyclometalated Ir(III) complexes not only serve as cell imaging agents, but can also inhibit tumor necrosis factor α, promote DNA oxidation, generate singlet oxygen when photoactivated, and exhibit good anticancer activity. Although relatively unexplored, organoiridium chemistry offers unique features that researchers can exploit to generate novel diagnostic agents and drugs with new mechanisms of action

    Quantifying the Microvascular Origin of BOLD-fMRI from First Principles with Two-Photon Microscopy and an Oxygen-Sensitive Nanoprobe

    Get PDF
    The blood oxygenation level-dependent (BOLD) contrast is widely used in functional magnetic resonance imaging (fMRI) studies aimed at investigating neuronal activity. However, the BOLD signal reflects changes in blood volume and oxygenation rather than neuronal activity per se. Therefore, understanding the transformation of microscopic vascular behavior into macroscopic BOLD signals is at the foundation of physiologically informed noninvasive neuroimaging. Here, we use oxygen-sensitive two-photon microscopy to measure the BOLD-relevant microvascular physiology occurring within a typical rodent fMRI voxel and predict the BOLD signal from first principles using those measurements. The predictive power of the approach is illustrated by quantifying variations in the BOLD signal induced by the morphological folding of the human cortex. This framework is then used to quantify the contribution of individual vascular compartments and other factors to the BOLD signal for different magnet strengths and pulse sequences.National Institutes of Health (U.S.) (Grant P41RR14075)National Institutes of Health (U.S.) (Grant R01NS067050)National Institutes of Health (U.S.) (Grant R01NS057198)National Institutes of Health (U.S.) (Grant R01EB000790)American Heart Association (Grant 11SDG7600037)Advanced Multimodal NeuroImaging Training Program (R90DA023427

    Multiparametric, Longitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke

    Get PDF
    Progress in experimental stroke and translational medicine could be accelerated by high-resolution in vivo imaging of disease progression in the mouse cortex. Here, we introduce optical microscopic methods that monitor brain injury progression using intrinsic optical scattering properties of cortical tissue. A multi-parametric Optical Coherence Tomography (OCT) platform for longitudinal imaging of ischemic stroke in mice, through thinned-skull, reinforced cranial window surgical preparations, is described. In the acute stages, the spatiotemporal interplay between hemodynamics and cell viability, a key determinant of pathogenesis, was imaged. In acute stroke, microscopic biomarkers for eventual infarction, including capillary non-perfusion, cerebral blood flow deficiency, altered cellular scattering, and impaired autoregulation of cerebral blood flow, were quantified and correlated with histology. Additionally, longitudinal microscopy revealed remodeling and flow recovery after one week of chronic stroke. Intrinsic scattering properties serve as reporters of acute cellular and vascular injury and recovery in experimental stroke. Multi-parametric OCT represents a robust in vivo imaging platform to comprehensively investigate these properties
    corecore