23 research outputs found

    Experimental models to study intestinal microbes-mucus interactions in health and disease

    Get PDF
    A close symbiotic relationship exists between the intestinal microbiota and its host. A critical component of gut homeostasis is the presence of a mucus layer covering the gastrointestinal tract. Mucus is a viscoelastic gel at the interface between the luminal content and the host tissue that provides a habitat to the gut microbiota and protects the intestinal epithelium. The review starts by setting up the biological context underpinning the need for experimental models to study gut bacteria-mucus interactions in the digestive environment. We provide an overview of the structure and function of intestinal mucus and mucins, their interactions with intestinal bacteria (including commensal, probiotics and pathogenic microorganisms) and their role in modulating health and disease states. We then describe the characteristics and potentials of experimental models currently available to study the mechanisms underpinning the interaction of mucus with gut microbes, including in vitro, ex vivo and in vivo models. We then discuss the limitations and challenges facing this field of research

    Modulation par les fibres alimentaires et le mucus intestinal de la pathogénicité des Escherichia coli entérotoxinogÚnes (ETEC)

    No full text
    The human digestive tract is a key player at the boundary between the external environment and the host. At the interface between the digestive lumen and the intestinal epithelium, the mucus layer, a complex viscoelastic adherent secretion, acts as a major modulator of human health. In order to reach the intestinal cells and/or colonize, several enteric pathogens have to interact with and get through this physical, chemical and biological line of defense. Enterotoxigenic Escherichia coli (ETEC), the main pathogenic agent of travelers’ diarrhea, does not escape this rule. To fulfil its infection cycle, ETEC is equipped with an arsenal of adhesins and mucinases allowing cellular adhesion and mucus degradation, respectively. These colonization mechanisms facilitate the production and release of heat labile (LT) and/or heat-stable (ST) enterotoxins, ultimately responsible for cholera-like watery diarrhea. To date the treatment of ETEC infection remains mainly symptomatic with a frequent use of antibiotics. Given the global burden of antibiotic resistance and its negative impact on human health, it is urgent to find new preventive strategies against these infections. Among the candidates, dietary fibers have been recently investigated for their antagonistic properties against enteric pathogens. A low number of studies has suggested that they may act through various means: (i) direct antagonism (bacteriostatic effect, inhibition of cell adhesion and toxin production) or (ii) indirect antagonism via modulation of gut microbiota composition/activity or decoy of resident gut microbes from mucus layer consumption. In this context, this joint doctoral research work between Ghent University (Belgium) and UniversitĂ© Clermont Auvergne (France) aimed to (1) unravel how the mucus compartment can modulate the prototypical ETEC strain H10407 survival and virulence, and (2) decipher if dietary fiber-containing products could present ETEC anti-infectious properties, notably by preventing ETEC-mucus interactions. In the first axis, we confirmed the prototypical ETEC strain H10407 adhesion propensity for the intestinal mucus by using different simple in vitro approaches. The introduction of mucin secretion and physical surface in the dynamic TIM-1 digestive model showed that mucus could favor ETEC survival during gastrointestinal passage without significantly affecting its virulence. However, when reaching the host intestinal cells simulated by mucus-secreting Caco-2/HT29-MTX co-culture, ETEC virulence gene expression was significantly induced confirming that the host is a key driver of pathogen’s virulence. When simulating the complex microbial background of the human gut, mucin addition did not impact significantly ETEC survival, but we showed that the mucosal compartment was colonized by a specific microbiota particularly affected by ETEC. In the second axis, a screening program was first performed to select among 8 fiber candidates from cereals, legumes or microbes the two most relevant based on their anti-infectious properties against ETEC strain H10407, namely a lentil fiber extract and specific yeast cell walls from Saccharomyces cerevisiae. In-depth investigations indicated that the lentil extract reduced LT toxin concentration while the yeast product decreased ETEC adhesion to the mucus secreting co-culture model. Also, in cell assays, both lentils and yeast fiber products were able to modulate ETEC virulence gene expression and innate immune response induction. Mainly yeast cell walls were able to strengthen intestinal barrier function. Finally, in batch experiments with fecal microbiota, we reported that the yeast product supported the prevalence of some phylogroups as Parabacteroides or commensal E. coli, which could be of interest in traveler’s diarrhea prevention. (...)Le tube digestif humain est un acteur clĂ© Ă  la frontiĂšre entre l'environnement externe et l'hĂŽte. À l'interface entre la lumiĂšre digestive et l'Ă©pithĂ©lium intestinal, la couche de mucus, une sĂ©crĂ©tion viscoĂ©lastique complexe et adhĂ©rente, agit comme un modulateur majeur de la santĂ© humaine. Afin d'atteindre les cellules intestinales et/ou de les coloniser, plusieurs agents pathogĂšnes entĂ©riques doivent interagir avec cette ligne de dĂ©fense physique, chimique et biologique et la traverser. L’Escherichia coli entĂ©rotoxinogĂšne (ETEC), principal agent pathogĂšne de la diarrhĂ©e du voyageur, n'Ă©chappe pas Ă  cette rĂšgle. Pour accomplir son cycle infectieux, l’ETEC est Ă©quipĂ© d'un arsenal d'adhĂ©sines et de mucinases permettant respectivement d’adhĂ©rer Ă  et de dĂ©grader le mucus. Ces mĂ©canismes de colonisation facilitent la production et la libĂ©ration des entĂ©rotoxines thermolabile (LT) et/ou thermostable (ST), responsables in fine de la diarrhĂ©e aqueuse de type cholĂ©rique. À ce jour, le traitement des infections Ă  ETEC reste principalement symptomatique avec un recours frĂ©quent aux antibiotiques. Compte tenu du poids mondial de la rĂ©sistance aux antibiotiques et de son impact nĂ©gatif sur la santĂ© humaine, il est urgent de trouver de nouvelles stratĂ©gies prĂ©ventives. Parmi les candidats, les fibres alimentaires ont Ă©tĂ© rĂ©cemment Ă©tudiĂ©es pour leurs propriĂ©tĂ©s antagonistes contre des agents pathogĂšnes entĂ©riques. Des Ă©tudes ont suggĂ©rĂ© qu'elles peuvent agir par diffĂ©rents moyens : (i) antagonisme direct (effet bactĂ©riostatique, inhibition de l'adhĂ©sion cellulaire et de la production de toxines) ou (ii) antagonisme indirect notamment via la modulation de la composition/activitĂ© du microbiote intestinal ou l’inhibition de la dĂ©gradation du mucus par les microorganismes rĂ©sidents. Dans ce contexte, ce travail de recherche doctorale conjoint entre l'UniversitĂ© de Gand (Belgique) et l'UniversitĂ© Clermont Auvergne (France) visait Ă  (1) Ă©lucider comment le compartiment du mucus peut moduler la survie et la virulence de la souche prototypique ETEC H10407, et (2) Ă©tudier si des produits contenant des fibres alimentaires pourraient prĂ©senter des propriĂ©tĂ©s anti-infectieuses pour ETEC, notamment en empĂȘchant les interactions ETEC-mucus. Dans le premier axe, nous avons confirmĂ© la propension Ă  l'adhĂ©sion de la souche prototypique d’ETEC H10407 pour le mucus intestinal en utilisant diffĂ©rentes approches simples in vitro. L'introduction d’une sĂ©crĂ©tion de mucine et d’une matrice de mucus solide dans le modĂšle digestif dynamique TIM-1 a montrĂ© que le mucus pouvait favoriser la survie des ETEC lors du passage gastro-intestinal sans affecter significativement leur virulence. En revanche, lorsque la souche H10407 adhĂšre sur des cellules intestinales de l'hĂŽte simulĂ©es par la co-culture Caco-2/HT29-MTX sĂ©crĂ©tant du mucus, l'expression des gĂšnes de virulence est significativement induite. Ceci confirme que l'hĂŽte est un facteur clĂ© de la virulence du pathogĂšne. Lors d’expĂ©riences de batch fermentaire simulant les interactions pathogĂšnes-microbiote, l'ajout de mucine n'a pas eu d'impact significatif sur la survie de ETEC, mais nous avons montrĂ© que le compartiment muqueux Ă©tait colonisĂ© par un microbiote spĂ©cifique particuliĂšrement affectĂ© par l’infection. Dans le deuxiĂšme axe, un programme de criblage a d'abord Ă©tĂ© rĂ©alisĂ© pour sĂ©lectionner parmi 8 produit contenant des fibres les deux plus Ă  mĂȘme d’exercer des propriĂ©tĂ©s anti-infectieuses contre la souche ETEC H10407. Ont Ă©tĂ© sĂ©lectionnĂ©s un extrait de fibre de lentilles et un extrait de parois de levure Saccharomyces cerevisiae. Des Ă©tudes approfondies ont indiquĂ© que l'extrait de lentilles rĂ©duisait la concentration de toxine LT tandis que les parois de levure diminuaient l'adhĂ©sion des ETEC au modĂšle de co-culture sĂ©crĂ©tant du mucus. (...

    Modulation par les fibres alimentaires et le mucus intestinal de la pathogénicité des Escherichia coli entérotoxinogÚnes (ETEC)

    No full text
    Le tube digestif humain est un acteur clĂ© Ă  la frontiĂšre entre l'environnement externe et l'hĂŽte. À l'interface entre la lumiĂšre digestive et l'Ă©pithĂ©lium intestinal, la couche de mucus, une sĂ©crĂ©tion viscoĂ©lastique complexe et adhĂ©rente, agit comme un modulateur majeur de la santĂ© humaine. Afin d'atteindre les cellules intestinales et/ou de les coloniser, plusieurs agents pathogĂšnes entĂ©riques doivent interagir avec cette ligne de dĂ©fense physique, chimique et biologique et la traverser. L’Escherichia coli entĂ©rotoxinogĂšne (ETEC), principal agent pathogĂšne de la diarrhĂ©e du voyageur, n'Ă©chappe pas Ă  cette rĂšgle. Pour accomplir son cycle infectieux, l’ETEC est Ă©quipĂ© d'un arsenal d'adhĂ©sines et de mucinases permettant respectivement d’adhĂ©rer Ă  et de dĂ©grader le mucus. Ces mĂ©canismes de colonisation facilitent la production et la libĂ©ration des entĂ©rotoxines thermolabile (LT) et/ou thermostable (ST), responsables in fine de la diarrhĂ©e aqueuse de type cholĂ©rique. À ce jour, le traitement des infections Ă  ETEC reste principalement symptomatique avec un recours frĂ©quent aux antibiotiques. Compte tenu du poids mondial de la rĂ©sistance aux antibiotiques et de son impact nĂ©gatif sur la santĂ© humaine, il est urgent de trouver de nouvelles stratĂ©gies prĂ©ventives. Parmi les candidats, les fibres alimentaires ont Ă©tĂ© rĂ©cemment Ă©tudiĂ©es pour leurs propriĂ©tĂ©s antagonistes contre des agents pathogĂšnes entĂ©riques. Des Ă©tudes ont suggĂ©rĂ© qu'elles peuvent agir par diffĂ©rents moyens : (i) antagonisme direct (effet bactĂ©riostatique, inhibition de l'adhĂ©sion cellulaire et de la production de toxines) ou (ii) antagonisme indirect notamment via la modulation de la composition/activitĂ© du microbiote intestinal ou l’inhibition de la dĂ©gradation du mucus par les microorganismes rĂ©sidents. Dans ce contexte, ce travail de recherche doctorale conjoint entre l'UniversitĂ© de Gand (Belgique) et l'UniversitĂ© Clermont Auvergne (France) visait Ă  (1) Ă©lucider comment le compartiment du mucus peut moduler la survie et la virulence de la souche prototypique ETEC H10407, et (2) Ă©tudier si des produits contenant des fibres alimentaires pourraient prĂ©senter des propriĂ©tĂ©s anti-infectieuses pour ETEC, notamment en empĂȘchant les interactions ETEC-mucus. Dans le premier axe, nous avons confirmĂ© la propension Ă  l'adhĂ©sion de la souche prototypique d’ETEC H10407 pour le mucus intestinal en utilisant diffĂ©rentes approches simples in vitro. L'introduction d’une sĂ©crĂ©tion de mucine et d’une matrice de mucus solide dans le modĂšle digestif dynamique TIM-1 a montrĂ© que le mucus pouvait favoriser la survie des ETEC lors du passage gastro-intestinal sans affecter significativement leur virulence. En revanche, lorsque la souche H10407 adhĂšre sur des cellules intestinales de l'hĂŽte simulĂ©es par la co-culture Caco-2/HT29-MTX sĂ©crĂ©tant du mucus, l'expression des gĂšnes de virulence est significativement induite. Ceci confirme que l'hĂŽte est un facteur clĂ© de la virulence du pathogĂšne. Lors d’expĂ©riences de batch fermentaire simulant les interactions pathogĂšnes-microbiote, l'ajout de mucine n'a pas eu d'impact significatif sur la survie de ETEC, mais nous avons montrĂ© que le compartiment muqueux Ă©tait colonisĂ© par un microbiote spĂ©cifique particuliĂšrement affectĂ© par l’infection. Dans le deuxiĂšme axe, un programme de criblage a d'abord Ă©tĂ© rĂ©alisĂ© pour sĂ©lectionner parmi 8 produit contenant des fibres les deux plus Ă  mĂȘme d’exercer des propriĂ©tĂ©s anti-infectieuses contre la souche ETEC H10407. Ont Ă©tĂ© sĂ©lectionnĂ©s un extrait de fibre de lentilles et un extrait de parois de levure Saccharomyces cerevisiae. Des Ă©tudes approfondies ont indiquĂ© que l'extrait de lentilles rĂ©duisait la concentration de toxine LT tandis que les parois de levure diminuaient l'adhĂ©sion des ETEC au modĂšle de co-culture sĂ©crĂ©tant du mucus. (...)The human digestive tract is a key player at the boundary between the external environment and the host. At the interface between the digestive lumen and the intestinal epithelium, the mucus layer, a complex viscoelastic adherent secretion, acts as a major modulator of human health. In order to reach the intestinal cells and/or colonize, several enteric pathogens have to interact with and get through this physical, chemical and biological line of defense. Enterotoxigenic Escherichia coli (ETEC), the main pathogenic agent of travelers’ diarrhea, does not escape this rule. To fulfil its infection cycle, ETEC is equipped with an arsenal of adhesins and mucinases allowing cellular adhesion and mucus degradation, respectively. These colonization mechanisms facilitate the production and release of heat labile (LT) and/or heat-stable (ST) enterotoxins, ultimately responsible for cholera-like watery diarrhea. To date the treatment of ETEC infection remains mainly symptomatic with a frequent use of antibiotics. Given the global burden of antibiotic resistance and its negative impact on human health, it is urgent to find new preventive strategies against these infections. Among the candidates, dietary fibers have been recently investigated for their antagonistic properties against enteric pathogens. A low number of studies has suggested that they may act through various means: (i) direct antagonism (bacteriostatic effect, inhibition of cell adhesion and toxin production) or (ii) indirect antagonism via modulation of gut microbiota composition/activity or decoy of resident gut microbes from mucus layer consumption. In this context, this joint doctoral research work between Ghent University (Belgium) and UniversitĂ© Clermont Auvergne (France) aimed to (1) unravel how the mucus compartment can modulate the prototypical ETEC strain H10407 survival and virulence, and (2) decipher if dietary fiber-containing products could present ETEC anti-infectious properties, notably by preventing ETEC-mucus interactions. In the first axis, we confirmed the prototypical ETEC strain H10407 adhesion propensity for the intestinal mucus by using different simple in vitro approaches. The introduction of mucin secretion and physical surface in the dynamic TIM-1 digestive model showed that mucus could favor ETEC survival during gastrointestinal passage without significantly affecting its virulence. However, when reaching the host intestinal cells simulated by mucus-secreting Caco-2/HT29-MTX co-culture, ETEC virulence gene expression was significantly induced confirming that the host is a key driver of pathogen’s virulence. When simulating the complex microbial background of the human gut, mucin addition did not impact significantly ETEC survival, but we showed that the mucosal compartment was colonized by a specific microbiota particularly affected by ETEC. In the second axis, a screening program was first performed to select among 8 fiber candidates from cereals, legumes or microbes the two most relevant based on their anti-infectious properties against ETEC strain H10407, namely a lentil fiber extract and specific yeast cell walls from Saccharomyces cerevisiae. In-depth investigations indicated that the lentil extract reduced LT toxin concentration while the yeast product decreased ETEC adhesion to the mucus secreting co-culture model. Also, in cell assays, both lentils and yeast fiber products were able to modulate ETEC virulence gene expression and innate immune response induction. Mainly yeast cell walls were able to strengthen intestinal barrier function. Finally, in batch experiments with fecal microbiota, we reported that the yeast product supported the prevalence of some phylogroups as Parabacteroides or commensal E. coli, which could be of interest in traveler’s diarrhea prevention. (...

    PropriĂ©tĂ©s modulatrices des fibres alimentaires et rĂŽle du mucus intestinal sur la pathogĂ©nicitĂ© d’Escherichia coli entĂ©rotoxinogĂšne (ETEC)

    No full text
    The human digestive tract is a key player at the boundary between the external milieu and the host. At the interface between the digestive lumen and the intestinal epithelium, the mucus layer, a complex viscoelastic adherent secretion, acts as a major modulator of human health. In order to reach the intestinal cells and/or colonize, several enteric pathogens have to interact with and get through this physical, chemical and biological line of defense. Enterotoxigenic Escherichia coli (ETEC), the main pathogenic agent of travelers’ diarrhea, does not escape this rule. To fulfil its infection cycle, ETEC is equipped with an arsenal of adhesins and mucinases allowing cellular adhesion and mucus degradation, respectively. These colonization mechanisms facilitate the production and release of heat labile (LT) and/or heat-stable (ST) enterotoxins, ultimately responsible for cholera-like watery diarrhea. To date the treatment of ETEC infection remains mainly symptomatic with a frequent use of antibiotics. Given the global burden of antibiotic resistance and its negative impact on human health, it is urgent to find new preventive strategies against these infections. Among the candidates, dietary fibers have been recently investigated for their antagonistic properties against enteric pathogens. A low number of studies has suggested that they may act through various means: (i) direct antagonism (bacteriostatic effect, inhibition of cell adhesion and toxin production) or (ii) indirect antagonism via modulation of gut microbiota composition/activity or decoy of resident gut microbes from mucus layer consumption. In this context, this joint doctoral research work between Ghent University (Belgium) and UniversitĂ© Clermont Auvergne (France) aimed to (1) unravel how the mucus compartment can modulate the prototypical ETEC strain H10407 survival and virulence, and (2) decipher if dietary fiber-containing products could present ETEC anti-infectious properties, notably by preventing ETEC-mucus interactions.Le tube digestif humain est un acteur clĂ© Ă  la frontiĂšre entre le milieu extĂ©rieur et l'hĂŽte. À l'interface entre la lumiĂšre digestive et l'Ă©pithĂ©lium intestinal, la couche de mucus, une sĂ©crĂ©tion adhĂ©rente viscoĂ©lastique complexe, agit comme un modulateur majeur de la santĂ© humaine. Afin d'atteindre les cellules intestinales et/ou de les coloniser, plusieurs agents pathogĂšnes entĂ©riques doivent interagir avec cette ligne de dĂ©fense physique, chimique et biologique et la traverser. Escherichia coli entĂ©rotoxinogĂšne (ETEC), le principal agent pathogĂšne de la diarrhĂ©e du voyageur, n'Ă©chappe pas Ă  cette rĂšgle. Pour accomplir son cycle infectieux, ETEC est Ă©quipĂ© d'un arsenal d'adhĂ©sines et de mucinases permettant respectivement l'adhĂ©sion cellulaire et la dĂ©gradation du mucus. Ces mĂ©canismes de colonisation facilitent la production et la libĂ©ration d'entĂ©rotoxines thermolabiles (LT) et/ou thermostables (ST), responsables in fine de la diarrhĂ©e aqueuse de type cholĂ©rique. À ce jour, le traitement de l'infection par ETEC reste principalement symptomatique avec un recours frĂ©quent aux antibiotiques. Compte tenu du poids mondial de la rĂ©sistance aux antibiotiques et de son impact nĂ©gatif sur la santĂ© humaine, il est urgent de trouver de nouvelles stratĂ©gies prĂ©ventives contre ces infections. Parmi les candidats, les fibres alimentaires ont Ă©tĂ© rĂ©cemment Ă©tudiĂ©es pour leurs propriĂ©tĂ©s antagonistes contre les agents pathogĂšnes entĂ©riques. Un faible nombre d'Ă©tudes a suggĂ©rĂ© qu'elles peuvent agir par diffĂ©rents moyens : (i) antagonisme direct (effet bactĂ©riostatique, inhibition de l'adhĂ©sion cellulaire et de la production de toxines) ou (ii) antagonisme indirect via la modulation de la composition/activitĂ© du microbiote intestinal ou le leurre des microbes intestinaux rĂ©sidents Ă  partir de la consommation de la couche de mucus. Dans ce contexte, ce travail de recherche doctorale conjoint entre l'UniversitĂ© de Gand (Belgique) et l'UniversitĂ© Clermont Auvergne (France) visait Ă  (1) comprendre comment le compartiment du mucus peut moduler la survie et la virulence de la souche prototypique ETEC H10407, et (2) dĂ©chiffrer si les produits contenant des fibres alimentaires pourraient prĂ©senter des propriĂ©tĂ©s anti-infectieuses pour ETEC, notamment en empĂȘchant les interactions ETEC-mucus

    Modulatory properties of dietary fiber and role of intestine mucus in Enterotoxigenic Escherichia coli (ETEC) pathogenicity

    No full text

    Tripartite relationship between gut microbiota, intestinal mucus and fibers: towards preventive strategies against enteric infections

    No full text
    International audienceThe human gut is inhabited by a large variety of microorganims involved in many physiological processes and collectively refered as to gut microbiota. Disrupted microbiome has been associated with negative health outcomes and especially could promote the onset of enteric infections. To sustain their growth and persistence within the human digestive tract, gut microbes and enteric pathogens rely on two main polysaccharide compartments, namely dietary fibers and mucus carbohydrates. Several evidences suggest that the three-way relationship between gut microbiota, dietary fibers and mucus layer could unravel the capacity of enteric pathogens to colonize the human digestive tract and ultimately lead to infection. The review starts by shedding light on similarities and differences between dietary fibers and mucus carbohydrates structures and functions. Next, we provide an overview of the interactions of these two components with the third partner, namely the gut microbiota, under health and diseased situations. The review will then provide insights into the relevance of using dietary fibers interventions to prevent enteric infections with a focus on gut microbial imbalance and impaired-mucus integrity. Facing the numerous challenges in studying microbiota-pathogen-dietary fiber-mucus interactions, we lastly describe the characteristics and potentialities of currently available in vitro models of the human gut

    In vitro evaluation of dietary fiber anti-infectious properties against food-borne enterotoxigenic Escherichia coli

    No full text
    International audienceDietary fibers have well-known beneficial effects on human health, but their anti-infectious properties against human enteric pathogens have been poorly investigated. Enterotoxigenic Escherichia coli (ETEC) is the main agent of travelers’ diarrhea, against which targeted preventive strategies are currently lacking. ETEC pathogenesis relies on multiple virulence factors allowing interactions with the intestinal mucosal layer and toxins triggering the onset of diarrheal symptoms. Here, we used complementary in vitro assays to study the antagonistic properties of eight fiber-containing products from cereals, legumes or microbes against the prototypical human ETEC strain H10407. Inhibitory effects of these products on the pathogen were tested through growth, toxin production and mucus/cell adhesion inhibition assays. None of the tested compounds inhibited ETEC strain H10407 growth, while lentil extract was able to decrease heat labile toxin (LT) concentration in culture media. Lentil extract and specific yeast cell walls also interfered with ETEC strain H10407 adhesion to mucin beads and human intestinal cells. These results constitute a first step in the use of dietary fibers as a nutritional strategy to prevent ETEC infection. Further work will be dedicated to the study of fiber/ETEC interactions within a complex gut microbial background
    corecore