115 research outputs found
Change of biological soil quality in organic and conventional farming systems of the DOK trial
The DOK trial has started in the 1970ies, when first reports warned us on the consequences of our actions and the limits to growth. Even though farmers and a huge research community know better, we are still not managing our soils in a sustainable way. It seems inevitable that the mainstream agriculture wants to go beyond natural frontiers. Soils have an enormous buffering capacity, but this ends, when ecosystems are collapsing not only at the local, but also at the global level
Optimization of tube voltage in X-ray dark-field chest radiography
Grating-based X-ray dark-field imaging is a novel imaging modality which has been refined during the last decade. It exploits the wave-like behaviour of X-radiation and can nowadays be implemented with existing X-ray tubes used in clinical applications. The method is based on the detection of small-angle X-ray scattering, which occurs e.g. at air-tissue-interfaces in the lung or bone-fat interfaces in spongy bone. In contrast to attenuation-based chest X-ray imaging, the optimal tube voltage for dark-field imaging of the thorax has not yet been examined. In this work, dark-field scans with tube voltages ranging from 60 to 120 kVp were performed on a deceased human body. We analyzed the resulting images with respect to subjective and objective image quality, and found that the optimum tube voltage for dark-field thorax imaging at the used setup is at rather low energies of around 60 to 70 kVp. Furthermore, we found that at these tube voltages, the transmission radiographs still exhibit sufficient image quality to correlate dark-field information. Therefore, this study may serve as an important guideline for the development of clinical dark-field chest X-ray imaging devices for future routine use
Ultrasound-based "CEUS-Bosniak"classification for cystic renal lesions: an 8-year clinical experience
Purpose Renal cysts comprise benign and malignant entities. Risk assessment profts from CT/MRI imaging using the
Bosniak classifcation. While Bosniak-IIF, -III, and -IV cover complex cyst variants, Bosniak-IIF and -III stand out due to
notorious overestimation. Contrast-enhanced ultrasound (CEUS) is promising to overcome this defcit but warrants standardization. This study addresses the benefts of a combined CEUS and CT/MRI evaluation of renal cysts. The study provides
a realistic account of kidney tumor boards' intricacies in trying to validate renal cysts.
Methods 247 patients were examined over 8 years. CEUS lesions were graded according to CEUS-Bosniak (IIF, III, IV). 55
lesions were resected, CEUS-Bosniak- and CT/MRI-Bosniak-classifcation were correlated with histopathological diagnosis.
Interobserver agreement between the classifcations was evaluated statistically. 105 lesions were followed by ultrasound, and
change in CEUS-Bosniak-types and lesion size were documented.
Results 146 patients (156 lesions) were included. CEUS classifed 67 lesions as CEUS-Bosniak-IIF, 44 as CEUS-BosniakIII, and 45 as CEUS-Bosniak-IV. Histopathology of 55 resected lesions revealed benign cysts in all CEUS-Bosniak-IIF
lesions (2/2), 40% of CEUS-Bosniak-III and 8% of CEUS-Bosniak-IV, whereas malignancy was uncovered in 60% of
CEUS-Bosniak-III and 92% of CEUS-Bosniak-IV. Overall, CEUS-Bosniak-types matched CT/MRI-Bosniak types in 58%
(fair agreement, κ=0.28). CEUS-Bosniak resulted in higher stages than CT/MRI-Bosniak (40%). Ultrasound follow-up of
105 lesions detected no relevant diferences between CEUS-Bosniak-types concerning cysts size. 99% of lesions showed
the same CEUS-Bosniak-type.
Conclusion The CEUS-Bosniak classifcation is an essential tool in clinical practice to diferentiate and monitor renal cystic
lesions and empowers diagnostic work-up and patient care
Recommended from our members
Parametric Investigations of the Induced Shear Stress by a Laser-Generated Bubble
The present paper focuses on the simulation of the growth and collapse of a bubble in the vicinity of a wall. Both liquid and gas phases are assumed compressible, and their interaction is handled with the volume-of-fluid method. The main interest is to quantify the influence of the induced shear stress and pressure pulse in the vicinity of the wall for a variety of bubble sizes and bubble–wall distances. The results are validated against prior experimental results, such as the measurements of the bubble size, induced pressure field, and shear stress on the wall. The simulation predictions indicate that the wall in the vicinity of the bubble is subjected both to high shear stresses and large pressure pulses because of the growth and collapse of the bubble. In fact, pressure levels of 100 bar or more and shear stresses up to 25 kPa have been found at localized spots on the wall surface, at the region around the bubble. Moreover, the simulations are capable of providing additional insight to the experimental investigation, as the inherent limitations of the latter are avoided. The present work may be considered as a preliminary investigation in optimizing bubble energy and wall generation distance for ultrasound cleaning applications
Creatine Protects against Excitoxicity in an In Vitro Model of Neurodegeneration
Creatine has been shown to be neuroprotective in aging, neurodegenerative conditions and brain injury. As a common molecular background, oxidative stress and disturbed cellular energy homeostasis are key aspects in these conditions. Moreover, in a recent report we could demonstrate a life-enhancing and health-promoting potential of creatine in rodents, mainly due to its neuroprotective action. In order to investigate the underlying pharmacology mediating these mainly neuroprotective properties of creatine, cultured primary embryonal hippocampal and cortical cells were challenged with glutamate or H2O2. In good agreement with our in vivo data, creatine mediated a direct effect on the bioenergetic balance, leading to an enhanced cellular energy charge, thereby acting as a neuroprotectant. Moreover, creatine effectively antagonized the H2O2-induced ATP depletion and the excitotoxic response towards glutamate, while not directly acting as an antioxidant. Additionally, creatine mediated a direct inhibitory action on the NMDA receptor-mediated calcium response, which initiates the excitotoxic cascade. Even excessive concentrations of creatine had no neurotoxic effects, so that high-dose creatine supplementation as a health-promoting agent in specific pathological situations or as a primary prophylactic compound in risk populations seems feasible. In conclusion, we were able to demonstrate that the protective potential of creatine was primarily mediated by its impact on cellular energy metabolism and NMDA receptor function, along with reduced glutamate spillover, oxidative stress and subsequent excitotoxicity
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
- …