6,901 research outputs found
Evaluation of anomalies observed on film from S-190A flight system calibration test
Due to a persistent problem of scratched film from testing of the Skylab S-190A system, a series of tests were designed to identify the cause of the film scratching. The procedures followed in this test for pretest handling and packaging of the film, the makeup of the rolls for processing, and the results of the processed film evaluation are reported
Online occupational education in community colleges: Prevalence and contextual factors
This study examined the current state of online occupational programs in community colleges and explored issues related to institutional, economic, and social indicators that influence (a) the offering of online programs and (b) the programmatic connection to workforce development needs. This project is the first national study that categorizes and inventories specific types of online occupational programs in community colleges. The study included a national random sample of 321 institutions in the United States. Data were collected through institutional websites, statewide websites, follow-up emails, and phone inquiries to institutions. The following sections summarize key findings
The Volatile Composition of the Split Ecliptic comet 73P/Schwassmann-Wachmann 3: A Comparison of Fragments C and B
The composition of fragments C and B of the Jupiter-family comet 73P/Schwassmann-Wachmann 3 (SW3) was investigated in early April of 2006 at IR wavelengths using high-dispersion echelle spectroscopy. Both fragments were depleted in ethane, and C was depleted in most forms of volatile carbon. In particular, fragment C shows a severe depletion of CH_(3)OH but a "normal" abundance of HCN (which has a similar volatility). Thermal processing is a possible explanation, but since fragment B is perhaps sublimating fresher material because of the frequent outbursts and fragmentation, the observed depletions might have cosmogonic implications. The chemistry of the volatile ices in SW3, like in the Oort Cloud comet C/1999 S4 (LINEAR), may be associated with sublimation of icy mantles from precometary grains followed by subsequent gas-phase chemistry and recondensation
The ideal gas as an urn model: derivation of the entropy formula
The approach of an ideal gas to equilibrium is simulated through a
generalization of the Ehrenfest ball-and-box model. In the present model, the
interior of each box is discretized, {\it i.e.}, balls/particles live in cells
whose occupation can be either multiple or single. Moreover, particles
occasionally undergo random, but elastic, collisions between each other and
against the container walls. I show, both analitically and numerically, that
the number and energy of particles in a given box eventually evolve to an
equilibrium distribution which, depending on cell occupations, is binomial
or hypergeometric in the particle number and beta-like in the energy.
Furthermore, the long-run probability density of particle velocities is
Maxwellian, whereas the Boltzmann entropy exactly reproduces the
ideal-gas entropy. Besides its own interest, this exercise is also relevant for
pedagogical purposes since it provides, although in a simple case, an explicit
probabilistic foundation for the ergodic hypothesis and for the maximum-entropy
principle of thermodynamics. For this reason, its discussion can profitably be
included in a graduate course on statistical mechanics.Comment: 17 pages, 3 figure
Cascade Failure in a Phase Model of Power Grids
We propose a phase model to study cascade failure in power grids composed of
generators and loads. If the power demand is below a critical value, the model
system of power grids maintains the standard frequency by feedback control. On
the other hand, if the power demand exceeds the critical value, an electric
failure occurs via step out (loss of synchronization) or voltage collapse. The
two failures are incorporated as two removal rules of generator nodes and load
nodes. We perform direct numerical simulation of the phase model on a
scale-free network and compare the results with a mean-field approximation.Comment: 7 pages, 2 figure
Estimating good discrete partitions from observed data: symbolic false nearest neighbors
A symbolic analysis of observed time series data requires making a discrete
partition of a continuous state space containing observations of the dynamics.
A particular kind of partition, called ``generating'', preserves all dynamical
information of a deterministic map in the symbolic representation, but such
partitions are not obvious beyond one dimension, and existing methods to find
them require significant knowledge of the dynamical evolution operator or the
spectrum of unstable periodic orbits. We introduce a statistic and algorithm to
refine empirical partitions for symbolic state reconstruction. This method
optimizes an essential property of a generating partition: avoiding topological
degeneracies. It requires only the observed time series and is sensible even in
the presence of noise when no truly generating partition is possible. Because
of its resemblance to a geometrical statistic frequently used for
reconstructing valid time-delay embeddings, we call the algorithm ``symbolic
false nearest neighbors''
Dimension of interaction dynamics
A method allowing to distinguish interacting from non-interacting systems
based on available time series is proposed and investigated. Some facts
concerning generalized Renyi dimensions that form the basis of our method are
proved. We show that one can find the dimension of the part of the attractor of
the system connected with interaction between its parts. We use our method to
distinguish interacting from non-interacting systems on the examples of
logistic and H\'enon maps. A classification of all possible interaction schemes
is given.Comment: 15 pages, 14 (36) figures, submitted to PR
Iodine and Bromine Radical Reactions in Atmospheric Mercury Oxidation
We investigate the atmospheric oxidation of mercury Hg(0) by halogens,
initiated by Br and I to yield Hg(I), and continued by I, Br, BrO, ClO, IO, NO2
and HO2 to yield Hg(II) or Hg(0) using computational methods with focus on
determining the impact of rising iodine levels. We calculate reaction
enthalpies and Gibbs free energies using the Coupled Cluster singlets,
doublets, and perturbative triplets method (CCSD(T)) with the ma-def2-TZVP
basis set and effective core potential to account for relativistic effects.
Additionally, we investigate the reaction kinetics using variational transition
state theory based on geometric scans of bond dissociations at the
CASPT2/ma-def2-TZVP level. We compare the results obtained from the CASPT2 and
CCSD(T) methods to help define the uncertainty. Our results provide insights
into the mechanisms of these reactions and their implications for mercury
depletion events and for the atmosphere as a whole. The reaction HgBr + Br ->
HgBr2 was found to be twice as fast as HgI + I -> HgI2, with reaction rate
coefficients of 8.8x10^-13 and 4.2x10^-13 cm^3 molecule^-1 s^-1 respectively.
The BrHg + BrO -> BrHgOBr reaction was about 7.2 times faster than the HgI + IO
-> IHgOI reaction with their rates being 3.3x10^-14 and 4.6x10^-15 cm^3
molecule^-1 s^-1 respectively. We investigate the HgXOY (X and Y=halogen)
complexes. We find that rising iodine levels will lead to shortened mercury
lifetime due to the impact of the HgI + I -> HgI2 reaction
Comet C/2004 Q2 (MACHHOLZ): Parent Volatiles, a Search for Deuterated Methane, and Constraint on the CH4 Spin Temperature
High-dispersion (l/dl ~ 25,000) infrared spectra of Comet C/2004 Q2
(Machholz) were acquired on Nov. 28-29, 2004, and Jan. 19, 2005 (UT dates) with
NIRSPEC at the Keck-2 telescope on Mauna Kea. We detected H2O, CH4, C2H2, C2H6,
CO, H2CO, CH3OH, HCN, and NH3 and we conducted a sensitive search for CH3D. We
report rotational temperatures, production rates, and mixing ratios (with
respect to H2O) at heliocentric distances of 1.49 AU (Nov. 2004) and 1.21 AU
(Jan. 2005). We highlight three principal results: (1) The mixing ratios of
parent volatiles measured at 1.49 AU and 1.21 AU agree within confidence
limits, consistent with homogeneous composition in the mean volatile release
from the nucleus of C/2004 Q2. Notably, the relative abundance of C2H6/C2H2 is
substantially higher than those measured in other comets, while the mixing
ratios C2H6/H2O, CH3OH/H2O, and HCN/H2O are similar to those observed in
comets, referred to as "organics-normal". (2) The spin temperature of CH4 is >
35-38 K, an estimate consistent with the more robust spin temperature found for
H2O. (3) We obtained a 3s upper limit of CH3D/CH4 < 0.020 (D/H < 0.005). This
limit suggests that methane released from the nucleus of C/2004 Q2 is not
dominated by a component formed in extremely cold (near 10 K) environments.
Formation pathways of both interstellar and nebular origin consistent with the
measured D/H in methane are discussed. Evaluating the relative contributions of
these pathways requires further modeling of chemistry including both gas-phase
and gas-grain processes in the natal interstellar cloud and in the
protoplanetary disk.Comment: Accepted by The Astrophysical Journa
- …