4 research outputs found

    The differential contribution of the innate immune system to a good pathological response in the breast and axillary lymph nodes induced by neoadjuvant chemotherapy in women with large and locally advanced breast cancers

    Get PDF
    The tumour microenvironment consists of malignant cells, stroma, and immune cells. The role of adaptive immunity in inducing a pathological complete response (pCR) in breast cancer with neoadjuvant chemotherapy (NAC) is well studied. The contribution of innate immunity, however, is poorly documented. Breast tumours and axillary lymph nodes (ALNs) from 33 women with large and locally advanced breast cancers (LLABCs) undergoing NAC were immunohistochemically assessed for tumour-infiltrating macrophages (TIMs: M1 and M2), neutrophils (TINs), and dendritic cells (TIDCs) using labelled antibodies and semiquantitative methods. Patients’ blood neutrophils (n = 108), DCs (mDC1 and pDC), and their costimulatory molecules (n = 30) were also studied. Pathological results were classified as pCR, good (GPR) or poor (PRR). In breast and metastatic ALNs, high levels of CD163+ TIMs were significantly associated with a pCR. In blood, high levels of neutrophils were significantly associated with pCR in metastatic ALNs, whilst the % of mDC1 and pDC and expression of HLA-DR, mDC1 CD40, and CD83 were significantly reduced. NAC significantly reduced tumour DCs but increased blood DCs. PPRs to NAC had significantly reduced HLA-DR, CD40, and CD86 expression. Our study demonstrated novel findings documenting the differential but important contributions of innate immunity to pCRs in patients with LLABCs undergoing NAC

    Ex vivo recovery and activation of dysfunctional, anergic, monocyte-derived dendritic cells from patients with operable breast cancer: critical role of IFN-alpha

    Get PDF
    Background Dendritic cells (DCs) play a crucial role in initiating effective cell-mediated immune responses, but are dysfunctional and anergic in breast cancer. Reversal of this dysfunction and establishment of optimal DC function is a key prerequisite for the induction of effective anti-cancer immune responses. Results Peripheral blood DCs (PBDCs) and lymph node DCs (LNDCs) generated in vitro from adherent cultures of peripheral blood monocytes (PBMs) and lymph node monocytes (LNMs), respectively, using the 4 cytokine conditioned medium (CCM) (GM-CSF+IL-4+TNF-α+IFN-α) or 3 CCM (GM-CSF+IL-4+TNF-α) demonstrated a significantly higher degree of recovery and functional capacity in a mixed lymphocyte DC reaction (MLDCR, p < 0.001), expressed significantly higher levels of HLA-DR, CD86, compared with 2 CCM (GM-CSF+IL-4) or medium alone generated DCs from PBMs and LNMs (p < 0.001). The PBDCs generated with 3 CCM or 4 CCM showed a significantly (p < 0.001) enhanced macropinocytotic capability (dextran particles) and induced increased production and secretion of interleukin-12p40 (IL-12p40) in vitro (p < 0.001), compared with PBDCs generated from monocytes using 2 CCM or medium alone. Lipopolysaccharide (LPS) stimulation of PBDCs generated with 4 CCM demonstrated enhanced secretion of IL-6 but not IL-12p70, compared with control DCs unstimulated with LPS (p < 0.001). Conclusion Dysfunctional and anergic PBDCs and LNDCs from patients with operable breast cancer can be optimally reversed by ex vivo culturing of precursor adherent monocytes using a 4 CCM containing IFN-α. Maximal immunophenotypic recovery and functional reactivation of DCs is seen in the presence of IFN-α. However, 4 CCM containing IFN-α generated-PBDCs, do not produce and secrete IL-12p70 in vitro

    Generation in vivo of peptide-specific cytotoxic T cells and presence of regulatory T cells during vaccination with hTERT (class I and II) peptide-pulsed DCs

    Get PDF
    Optimal techniques for DC generation for immunotherapy in cancer are yet to be established. Study aims were to evaluate: (i) DC activation/maturation milieu (TNF-α +/- IFN-α) and its effects on CD8+ hTERT-specific T cell responses to class I epitopes (p540 or p865), (ii) CD8+ hTERT-specific T cell responses elicited by vaccination with class I alone or both class I and II epitope (p766 and p672)-pulsed DCs, prepared without IFN-α, (iii) association between circulating T regulatory cells (Tregs) and clinical responses
    corecore