201 research outputs found

    A numerical method for solving the Vlasov equation

    Get PDF
    A numerical procedure is derived for the solution of the Vlasov-Poisson system of equations in two phase-space variables. Derivatives with respect to the phase-space variables are approximated by a weighted sum of the values of the distribution function at property chosen neighboring points. The resulting set of ordinary differential equations is then solved by using an appropriate time intergration scheme. The accuracy of the proposed method is tested with some simple model problems. The results for the free streaming case, linear Landau damping, and nonlinear Landau damping are investigated and compared with those of the splitting scheme. The proposed method is found to be very accurate and efficient

    Focal Functional and Microstructural Changes of Photoreceptors in Eyes with Acute Zonal Occult Outer Retinopathy

    Get PDF
    Purpose: Acute zonal occult outer retinopathy (AZOOR) is characterized by an acute zonal loss of outer retinal function with minimal ophthalmoscopic changes in one or both eyes. We present a patient with AZOOR whose ultrastructural and functional findings were followed for 8 months. Case: A 22-year-old woman developed an acute central scotoma in her right eye. Her best-corrected visual acuity (BCVA) was 0.5 OD and 1.2 OS. The ophthalmoscopic examinations, fluorescein angiography, and full-field electroretinograms (ERGs) were normal in both eyes. The amplitudes of the multifocal ERGs (mfERGs) were attenuated in the area corresponding to the scotoma. Spectral domain optical coherence tomography showed an absence of both the inner and outer segment (IS/OS) line of the photoreceptors and the cone outer segment tip (COST) line between the IS/OS line and the retinal pigment epithelium. These changes were seen in the area corresponding to the scotoma. One month later, the scotoma disappeared and the BCVA improved to 1.2 OD. The mfERGs increased to almost the same amplitude as the fellow eye. The IS/OS line became discernible but the COST line was still absent. The ophthalmological findings of the right macula remained normal during the 11-month follow-up period. Conclusions: Our findings indicate that the selective loss of the IS/OS and the COST lines is probably the morphological alterations corresponding with the reduced BCVA and the mfERGs in the areas of the visual field defects in the acute phase of AZOOR. But in the recovery phase, only the abnormality of the COST line is a subclinical sign for the disease. These findings should be important in understanding and evaluating the pathological mechanism in other outer retinal diseases

    A novel downstream Flood Hazard Grade Index incorporating upstream Hydrograph Characteristics to predict Debris Flow Runoff

    Get PDF
    The July 2020 debris flow in Japan caused enormous damage, and briefing sessions on disaster prevention have prompted demands for detailed explanations and predictions of such phenomena in high-risk areas. It is necessary to obtain four-dimensional risk information, which considers temporal changes in disaster risk, rather than limiting the analysis to conventionally static information. In this study, we developed a method for setting the boundary conditions necessary for debris flow prediction via a four-dimensional hazard map using various types of digital information. To understand the effects of hydrograph characteristics from the upstream, flow discharge was analysed under different flow conditions, such as topography-driven riverbed shear stress, using a one-dimensional numerical model that considers water and sediment flow. Our results suggested that characteristics of the upstream inflow hydrograph affect flood runoff processes downstream; therefore, we developed a separate downstream flood hazard grade index that uses characteristics of the upstream inflow hydrograph as input

    SLOPE FAILURE RISK ASSESSMENT MODELING USING TOPOGRAPHIC DATA AND NUMERICAL CALCULATION OF SOIL CONSERVATION BY TREE ROOT SYSTEMS

    Get PDF
    In Japan, the frequency of sudden heavy rain events has recently increased, causing slope failures that in turn increase rates of damage to transit infrastructure such as railways and roads. To reduce this damage, there is a need to identify locations near railroad tracks that are at risk of slope failure. Thus, an assessment that predicts whether or not damage will occur due to external forces such as heavy rains is required, rather than a simple relative risk assessment based on identifying locations similar to those damaged in previous events. In this study, we developed a method for time series stability assessment of slopes during heavy rains using digital topographic data. This method uses topographic data to estimate topsoil thickness, which contributes to stability, and soil strength, which is affected by the root systems of vegetation on slopes. Using differences in these parameters between tree species and forest type, we were able to calculate slope stability and simulate slope failure during rainfall. The simulations allowed us to evaluate locations along routes where previous failures occurred, and to identify at-risk locations that have not yet experienced slope failure. This approach will improve forest management based on risk assessments for intensifying heavy rains
    corecore