25 research outputs found

    Modeling highly pathogenic avian influenza transmission in wild birds and poultry in West Bengal, India.

    Get PDF
    Wild birds are suspected to have played a role in highly pathogenic avian influenza (HPAI) H5N1 outbreaks in West Bengal. Cluster analysis showed that H5N1 was introduced in West Bengal at least 3 times between 2008 and 2010. We simulated the introduction of H5N1 by wild birds and their contact with poultry through a stochastic continuous-time mathematical model. Results showed that reducing contact between wild birds and domestic poultry, and increasing the culling rate of infected domestic poultry communities will reduce the probability of outbreaks. Poultry communities that shared habitat with wild birds or those indistricts with previous outbreaks were more likely to suffer an outbreak. These results indicate that wild birds can introduce HPAI to domestic poultry and that limiting their contact at shared habitats together with swift culling of infected domestic poultry can greatly reduce the likelihood of HPAI outbreaks

    An avian influenza A(H11N1) virus from a wild aquatic bird revealing a unique Eurasian-American genetic reassortment

    Get PDF
    Influenza surveillance in different wild bird populations is critical for understanding the persistence, transmission and evolution of these viruses. Avian influenza (AI) surveillance was undertaken in wild migratory and resident birds during the period 2007–2008, in view of the outbreaks of highly pathogenic AI (HPAI) H5N1 in poultry in India since 2006. In this study, we present the whole genome sequence data along with the genetic and virological characterization of an Influenza A(H11N1) virus isolated from wild aquatic bird for the first time from India. The virus was low pathogenicity and phylogenetic analysis revealed that it was distinct from reported H11N1 viruses. The hemagglutinin (HA) gene showed maximum similarity with A/semipalmatedsandpiper/Delaware/2109/2000 (H11N6) and A/shorebird/Delaware/236/2003(H11N9) while the neuraminidase (NA) gene showed maximum similarity with A/duck/Mongolia/540/2001(H1N1). The virus thus possessed an HA gene of the American lineage. The NA and other six genes were of the Eurasian lineage and showed closer relatedness to non-H11 viruses. Such a genetic reassortment is unique and interesting, though the pathways leading to its emergence and its future persistence in the avian reservoir is yet to be fully established

    Diet and habitat affinities in six raptor species in India

    No full text
    Abstract Background Sympatric species adapt to, and temporally or geographically segregate access to similar limiting factors. Methods We compared nesting habitat and diet affinities of six raptor species in central India between the years 2006‒2015. Results A large composition of reptiles in the diet was characteristic for Circaetus gallicus, Spilornis cheela and Elanus caeruleus, while Aquila fasciata, Falco chicquera and Nisaetus cirrhatus show a higher proportion of birds. Species with greatest similarity of diet were C. gallicus and S. cheela. Considering the environmental characterization of areas where raptors built the nest, some species were ecologically closer than others. N. cirrhatus and S. cheela were related to the presence of water bodies, dry deciduous forest and evergreen forests, while E. caeruleus and C. gallicus preferred more open habitats. A. fasciata bred either on cliffs or trees, F. chicquera on trees or mobile towers, and the other four species built their nests exclusively in trees. Conclusions We conclude that although there was overlap in diet and nesting ecology for a number of species, the geographical separation likely limits competition for resources

    Tick infestation on wild snakes in northern part of western Ghats of India.

    No full text
    In total, 167 individuals of 30 species of snakes belonging to 22 genera and five families were examined for tick infestation from November 2008 to March 2010. Only two species of snakes, Ptyas mucosa (L., 1758) (Indian rat snake) and Naja naja (L., 1758) (spectacled cobra), were found infested by ticks. All ticks collected were identified to be Amblyomma gervaisi [previously Aponomma gervaisi (Lucas, 1847) 1. The average prevalence of these ticks on Indian rat snakes (n=48) was 29.16%, with abundance of 7.02 ticks per individual; on spectacled cobras (n=20), average prevalence was 30.00%, with abundance of 6.9 ticks per individual. The nymphs and males were predominant. All the ticks were found on the dorsal aspect of the body of the snake, and no ticks were recorded on the head, tail, or ventral body. The rate of tick infestation was highest in scrubland and was lowest in evergreen forests. Female Indian rat snakes showed higher tick infestation rates than male Indian rat snakes. Using Mann-Whitney U test, we found that longer snakes of both species had significantly higher rate of tick infestation in both the species of snakes

    Biometry based ageing of nestling Indian Spotted Owlets (Athene brama brama)

    Get PDF
    Biometric analysis helps in sex differentiation, understanding development and for studies of avian biology such as foraging ecology, evolutionary ecology, and survivorship. We suggest that biometry can also be a reliable, practical and inexpensive tool to determine the age of nestlings in the field by non-invasive methods. As an example we studied the biometry of wing, culmen, talon, tarsus and body mass of nestling southern Indian Spotted Owlets (Athene brama brama). Based on the growth pattern analysis using logistic growth model, discriminant analysis and CHAID (Chi-squared Automatic Interaction Detection) based decision tree, we show that biometry of nestling Spotted Owlets is an easy, reliable and inexpensive method to determine nestling age and to assess growth rate and relative nutritional status. These biometric parameters also allow us to predict their ability to initiate first flight from the nest site. This method is described here for the first time and we postulate that such charts can be devised for other avian species as well, so as to assist conservation biologists and bird rescuers

    Avian influenza surveillance reveals presence of low pathogenic avian influenza viruses in poultry during 2009-2011 in the West Bengal State, India

    No full text
    Abstract Introduction More than 70 outbreaks of the highly pathogenic avian influenza (HPAI) H5N1 have been reported in poultry in the western and north-eastern parts of India. Therefore, in view of the recent HPAI H5N1 outbreaks in poultry, active AI surveillance encompassing wild, resident, migratory birds and poultry was undertaken during 2009–2011 in the State of West Bengal. Methods A total of 5722 samples were collected from West Bengal; 3522 samples (2906 fecal droppings + 616 other environmental samples) were from migratory birds and 2200 samples [1604 tracheal, cloacal swabs, environmental samples, tissue samples + 596 blood (serum)] were from domestic ducks and poultry. All tracheal, cloacal and environmental samples were processed for virus isolation. Virus isolates were detected using hemagglutination assay and identified using hemagglutination inhibition (HI) and reverse transcriptase polymerase chain reaction (RT-PCR) assays. Sequencing and phylogenetic analysis of partial region of the hemagglutinin and neuraminidase genes was done. Intravenous pathogenicity index assays were performed in chickens to assess pathogenicity of AI virus isolates. Serum samples were tested for detection of antibodies against AI viruses using HI assay. Results A total of 57 AI H9N2, 15 AI H4N6 and 15 Newcastle Disease (NDV) viruses were isolated from chickens, from both backyard and wet poultry markets; AI H4N6 viruses were isolated from backyard chickens and domestic ducks. Characterization of AI H9N2 and H4N6 viruses revealed that they were of low pathogenicity. Domestic ducks were positive for antibodies against H5 and H7 viruses while chickens were positive for presence of antibodies against AI H9N2 and NDV. Conclusions In the current scenario of HPAI H5N1 outbreaks in West Bengal, this report shows presence of low pathogenic AI H9N2 and H4N6 viruses in chickens and domestic ducks during the period 2009–2011. This is the first report of isolation of H4N6 from India. Antibodies against AI H5 and H7 in ducks highlight the probable role of domestic ducks in the transmission of AI viruses. Human infections of H9N2 have been reported from China and Hong Kong. This necessitates implementation of prevention and control measures to limit the spread of AI viruses.</p
    corecore