14 research outputs found

    Transcatheter tricuspid valve implantation: A multicentre French study

    Get PDF
    SummaryBackgroundTranscatheter valve-in-valve (VIV) implantation in failing bioprosthesis is an emerging field in cardiology.AimTo report on a French multicentre experience and a literature review of tricuspid VIV implantation.MethodsWe approached different institutions and collected 10 unpublished cases; a literature review identified 71 patients, including our 10 cases. Clinical aspects and haemodynamic data are discussed.ResultsAmong our 10 unpublished cases, the reason for implantation was significant tricuspid stenosis (n=4), significant tricuspid regurgitation (n=1) or mixed lesion (n=5). Implantation was performed under general anaesthesia at mean age 28±17 years. The 22mm Melody valve was implanted in seven patients; the Edwards SAPIEN valve was implanted in three patients. The procedure succeeded in all cases, despite two embolizations in the right cardiac chambers; in both cases, the valve was stabilized close to the tricuspid annulus using a self-expandable stent, before implantation of a second Edwards SAPIEN valve. Functional class improved in all but one case. Mean diastolic gradient decreased from 9±2.45mmHg to 3.65±0.7mmHg (p=0.007); no more than trivial regurgitation was noticed. Among the published cases, the Melody valve was implanted in 41 patients, the Edwards SAPIEN valve in 29 patients and the Braile valve in one patient. Short-term results were similar for our 10 cases, but mid-term results are not yet available.ConclusionsTricuspid VIV implantation using the Melody or Edwards SAPIEN valves is a feasible and effective procedure for selected patients with failing bioprosthesis

    Marfan Sartan: a randomized, double-blind, placebo-controlled trial

    No full text
    International audienceAims - To evaluate the benefit of adding Losartan to baseline therapy in patients with Marfan syndrome (MFS). Methods and results - A double-blind, randomized, multi-centre, placebo-controlled, add on trial comparing Losartan (50 mg when 10 years old, and receiving standard therapy. 303 patients, mean age 29.9 years old, were randomized. The two groups were similar at baseline, 86% receiving β-blocker therapy. The median follow-up was 3.5 years. The evolution of aortic diameter at the level of the sinuses of Valsalva was not modified by the adjunction of Losartan, with a mean increase in aortic diameter at the level of the sinuses of Valsalva of 0.44 mm/year (s.e. = 0.07) (-0.043 z/year, s.e. = 0.04) in patients receiving Losartan and 0.51 mm/year (s.e. = 0.06) (-0.01 z/year, s.e. = 0.03) in those receiving placebo (P = 0.36 for the comparison on slopes in millimeter per year and P = 0.69 for the comparison on slopes on z-scores). Patients receiving Losartan had a slight but significant decrease in systolic and diastolic blood pressure throughout the study (5 mmHg). During the study period, aortic surgery was performed in 28 patients (15 Losartan, 13 placebo), death occurred in 3 patients [0 Losartan, 3 placebo, sudden death (1) suicide (1) oesophagus cancer (1)]. Conclusion - Losartan was able to decrease blood pressure in patients with MFS but not to limit aortic dilatation during a 3-year period in patients >10 years old. β-Blocker therapy alone should therefore remain the standard first line therapy in these patients

    Status and perspectives of the Virgo gravitational wave detector

    Get PDF
    International audienceVirgo is designed to detect gravitational waves of both astrophysical and cosmological origin in the frequency range from a few Hz to a few kHz. After the end of the first science run, partially overlapped with the LIGO fifth science run, the detector underwent several upgrades to improve its sensitivity. The second Virgo science run started at the beginning of July 2009 in coincidence with LIGO. A further upgrade is planned at beginning of 2010 with the installation of new suspensions for the test masses and of new mirrors. This will lead to a considerable improvement in the sensitivity and represents an intermediate step toward the development of the advanced detectors

    Virgo: a laser interferometer to detect gravitational waves

    No full text
    This paper presents a complete description of Virgo, the French-Italian gravitational wave detector. The detector, built at Cascina, near Pisa (Italy), is a very large Michelson interferometer, with 3 km-long arms. In this paper, following a presentation of the physics requirements, leading to the specifications for the construction of the detector, a detailed description of all its different elements is given.These include civil engineering infrastructures, a huge ultra-high vacuum (UHV) chamber (about 6000 cubic metres), all of the optical components, including high quality mirrors and their seismic isolating suspensions, all of the electronics required to control the interferometer and for signal detection. The expected performances of these different elements are given, leading to an overall sensitivity curve as a function of the incoming gravitational wave frequency. This description represents the detector as built and used in the first data-taking runs. Improvements in different parts have been and continue to be performed, leading to better sensitivities. These will be detailed in a forthcoming paper

    Virgo: a laser interferometer to detect gravitational waves

    No full text
    none336sìThis paper presents a complete description of Virgo, the French-Italian gravitational wave detector. The detector, built at Cascina, near Pisa (Italy), is a very large Michelson interferometer, with 3 km-long arms. In this paper, following a presentation of the physics requirements, leading to the specifications for the construction of the detector, a detailed description of all its different elements is given. These include civil engineering infrastructures, a huge ultra-high vacuum (UHV) chamber (about 6000 cubic metres), all of the optical components, including high quality mirrors and their seismic isolating suspensions, all of the electronics required to control the interferometer and for signal detection. The expected performances of these different elements are given, leading to an overall sensitivity curve as a function of the incoming gravitational wave frequency. This description represents the detector as built and used in the first data-taking runs. Improvements in different parts have been and continue to be performed, leading to better sensitivities. These will be detailed in a forthcoming paper.mixedT Accadia; F Acernese; M Alshourbagy; P Amico; F Antonucci; S Aoudia; N Arnaud; C Arnault; K G Arun; P Astone; S Avino; D Babusci; G Ballardin; F Barone; G Barrand; L Barsotti; M Barsuglia; A Basti; Th S Bauer; F Beauville; M Bebronne; M Bejger; M G Beker; F Bellachia; A Belletoile; J L Beney; M Bernardini; S Bigotta; R Bilhaut; S Birindelli; M Bitossi; M A Bizouard; M Blom; C Boccara; D Boget; F Bondu; L Bonelli; R Bonnand; V Boschi; L Bosi; T Bouedo; B Bouhou; A Bozzi; L Bracci; S Braccini; C Bradaschia; M Branchesi; T Briant; A Brillet; V Brisson; L Brocco; T Bulik; H J Bulten; D Buskulic; C Buy; G Cagnoli; G Calamai; E Calloni; E Campagna; B Canuel; F Carbognani; L Carbone; F Cavalier; R Cavalieri; R Cecchi; G Cella; E Cesarini; E Chassande-Mottin; S Chatterji; R Chiche; A Chincarini; A Chiummo; N Christensen; A C Clapson; F Cleva; E Coccia; P -F Cohadon; C N Colacino; J Colas; A Colla; M Colombini; G Conforto; A Corsi; S Cortese; F Cottone; J -P Coulon; E Cuoco; S D'Antonio; G Daguin; A Dari; V Dattilo; P Y David; M Davier; R Day; G Debreczeni; G De Carolis; M Dehamme; R Del Fabbro; W Del Pozzo; M del Prete; L Derome; R De Rosa; R DeSalvo; M Dialinas; L Di Fiore; A Di Lieto; M Di Paolo Emilio; A Di Virgilio; A Dietz; M Doets; P Dominici; A Dominjon; M Drago; C Drezen; B Dujardin; B Dulach; C Eder; A Eleuteri; D Enard; M Evans; L Fabbroni; V Fafone; H Fang; I Ferrante; F Fidecaro; I Fiori; R Flaminio; D Forest; L A Forte; J -D Fournier; L Fournier; J Franc; O Francois; S Frasca; F Frasconi; A Freise; A Gaddi; M Galimberti; L Gammaitoni; P Ganau; C Garnier; F Garufi; M E Gáspár; G Gemme; E Genin; A Gennai; G Gennaro; L Giacobone; A Giazotto; G Giordano; L Giordano; C Girard; R Gouaty; A Grado; M Granata; V Granata; X Grave; C Greverie; H Groenstege; G M Guidi; S Hamdani; J -F Hayau; S Hebri; A Heidmann; H Heitmann; P Hello; G Hemming; E Hennes; R Hermel; P Heusse; L Holloway; D Huet; M Iannarelli; P Jaranowski; D Jehanno; L Journet; S Karkar; T Ketel; H Voet; J Kovalik; I Kowalska; S Kreckelbergh; A Krolak; J C Lacotte; B Lagrange; P La Penna; M Laval; J C Le Marec; N Leroy; N Letendre; T G F Li; B Lieunard; N Liguori; O Lodygensky; B Lopez; M Lorenzini; V Loriette; G Losurdo; M Loupias; J M Mackowski; T Maiani; E Majorana; C Magazzù; I Maksimovic; V Malvezzi; N Man; S Mancini; B Mansoux; M Mantovani; F Marchesoni; F Marion; P Marin; J Marque; F Martelli; A Masserot; L Massonnet; G Matone; L Matone; M Mazzoni; F Menzinger; C Michel; L Milano; Y Minenkov; S Mitra; M Mohan; J -L Montorio; R Morand; F Moreau; J Moreau; N Morgado; A Morgia; S Mosca; V Moscatelli; B Mours; P Mugnier; F -A Mul; L Naticchioni; I Neri; F Nocera; E Pacaud; G Pagliaroli; A Pai; L Palladino; C Palomba; F Paoletti; R Paoletti; A Paoli; S Pardi; G Parguez; M Parisi; A Pasqualetti; R Passaquieti; D Passuello; M Perciballi; B Perniola; G Persichetti; S Petit; M Pichot; F Piergiovanni; M Pietka; R Pignard; L Pinard; R Poggiani; P Popolizio; T Pradier; M Prato; G A Prodi; M Punturo; P Puppo; K Qipiani; O Rabaste; D S Rabeling; I Rácz; F Raffaelli; P Rapagnani; S Rapisarda; V Re; A Reboux; T Regimbau; V Reita; A Remilleux; F Ricci; I Ricciardi; F Richard; M Ripepe; F Robinet; A Rocchi; L Rolland; R Romano; D Rosińska; P Roudier; P Ruggi; G Russo; L Salconi; V Sannibale; B Sassolas; D Sentenac; S Solimeno; R Sottile; L Sperandio; R Stanga; R Sturani; B Swinkels; M Tacca; R Taddei; L Taffarello; M Tarallo; S Tissot; A Toncelli; M Tonelli; O Torre; E Tournefier; F Travasso; C Tremola; E Turri; G Vajente; J F J van den Brand; C Van Den Broeck; S van der Putten; M Vasuth; M Vavoulidis; G Vedovato; D Verkindt; F Vetrano; O Véziant; A Viceré; J -Y Vinet; S Vilalte; S Vitale; H Vocca; R L Ward; M Was; K Yamamoto; M Yvert; J -P Zendri; Z ZhangT., Accadia; F., Acernese; M., Alshourbagy; P., Amico; F., Antonucci; S., Aoudia; N., Arnaud; C., Arnault; K. G., Arun; P., Astone; S., Avino; D., Babusci; G., Ballardin; F., Barone; G., Barrand; L., Barsotti; M., Barsuglia; A., Basti; Th S., Bauer; F., Beauville; M., Bebronne; M., Bejger; M. G., Beker; F., Bellachia; A., Belletoile; J. L., Beney; M., Bernardini; S., Bigotta; R., Bilhaut; S., Birindelli; M., Bitossi; M. A., Bizouard; M., Blom; C., Boccara; D., Boget; F., Bondu; L., Bonelli; R., Bonnand; V., Boschi; L., Bosi; T., Bouedo; B., Bouhou; A., Bozzi; L., Bracci; S., Braccini; C., Bradaschia; Branchesi, Marica; T., Briant; A., Brillet; V., Brisson; L., Brocco; T., Bulik; H. J., Bulten; D., Buskulic; C., Buy; G., Cagnoli; G., Calamai; E., Calloni; E., Campagna; B., Canuel; F., Carbognani; L., Carbone; F., Cavalier; R., Cavalieri; R., Cecchi; G., Cella; Cesarini, Elisabetta; E., Chassande Mottin; S., Chatterji; R., Chiche; A., Chincarini; A., Chiummo; N., Christensen; A. C., Clapson; F., Cleva; E., Coccia; P. F., Cohadon; C. N., Colacino; J., Colas; A., Colla; M., Colombini; Conforto, Giovanni; A., Corsi; S., Cortese; F., Cottone; J. P., Coulon; E., Cuoco; S., D'Antonio; G., Daguin; A., Dari; V., Dattilo; P. Y., David; M., Davier; R., Day; G., Debreczeni; G., De Carolis; M., Dehamme; R., Del Fabbro; W., Del Pozzo; M., del Prete; L., Derome; R., De Rosa; R., Desalvo; M., Dialinas; L., Di Fiore; A., Di Lieto; M., Di Paolo Emilio; A., Di Virgilio; A., Dietz; M., Doets; Dominici, Pietro; A., Dominjon; M., Drago; C., Drezen; B., Dujardin; B., Dulach; C., Eder; A., Eleuteri; D., Enard; M., Evans; L., Fabbroni; V., Fafone; H., Fang; I., Ferrante; F., Fidecaro; I., Fiori; R., Flaminio; D., Forest; L. A., Forte; J. D., Fournier; L., Fournier; J., Franc; O., Francois; S., Frasca; F., Frasconi; A., Freise; A., Gaddi; M., Galimberti; L., Gammaitoni; P., Ganau; C., Garnier; F., Garufi; M. E., Gáspár; G., Gemme; E., Genin; A., Gennai; G., Gennaro; L., Giacobone; A., Giazotto; G., Giordano; L., Giordano; C., Girard; R., Gouaty; A., Grado; M., Granata; V., Granata; X., Grave; C., Greverie; H., Groenstege; Guidi, GIANLUCA MARIA; S., Hamdani; J. F., Hayau; S., Hebri; A., Heidmann; H., Heitmann; P., Hello; G., Hemming; E., Hennes; R., Hermel; P., Heusse; L., Holloway; D., Huet; M., Iannarelli; P., Jaranowski; D., Jehanno; L., Journet; S., Karkar; T., Ketel; H., Voet; J., Kovalik; I., Kowalska; S., Kreckelbergh; A., Krolak; J. C., Lacotte; B., Lagrange; P., La Penna; M., Laval; J. C., Le Marec; N., Leroy; N., Letendre; T. G. F., Li; B., Lieunard; N., Liguori; O., Lodygensky; B., Lopez; M., Lorenzini; V., Loriette; G., Losurdo; M., Loupias; J. M., Mackowski; T., Maiani; E., Majorana; C., Magazzù; I., Maksimovic; V., Malvezzi; N., Man; S., Mancini; B., Mansoux; M., Mantovani; F., Marchesoni; F., Marion; P., Marin; J., Marque; Martelli, Filippo; A., Masserot; L., Massonnet; G., Matone; L., Matone; M., Mazzoni; F., Menzinger; C., Michel; L., Milano; Y., Minenkov; S., Mitra; M., Mohan; J. L., Montorio; R., Morand; F., Moreau; J., Moreau; N., Morgado; A., Morgia; S., Mosca; V., Moscatelli; B., Mours; P., Mugnier; F. A., Mul; L., Naticchioni; I., Neri; F., Nocera; E., Pacaud; G., Pagliaroli; A., Pai; L., Palladino; C., Palomba; F., Paoletti; R., Paoletti; A., Paoli; S., Pardi; G., Parguez; M., Parisi; A., Pasqualetti; R., Passaquieti; D., Passuello; M., Perciballi; Perniola, Bruna; G., Persichetti; S., Petit; M., Pichot; Piergiovanni, Francesco; M., Pietka; R., Pignard; L., Pinard; R., Poggiani; P., Popolizio; T., Pradier; M., Prato; G. A., Prodi; M., Punturo; P., Puppo; K., Qipiani; O., Rabaste; D. S., Rabeling; I., Rácz; F., Raffaelli; P., Rapagnani; S., Rapisarda; V., Re; A., Reboux; T., Regimbau; V., Reita; A., Remilleux; F., Ricci; I., Ricciardi; F., Richard; M., Ripepe; F., Robinet; A., Rocchi; L., Rolland; R., Romano; D., Rosińska; P., Roudier; P., Ruggi; G., Russo; L., Salconi; V., Sannibale; B., Sassolas; D., Sentenac; S., Solimeno; R., Sottile; L., Sperandio; R., Stanga; Sturani, Riccardo; B., Swinkels; M., Tacca; R., Taddei; L., Taffarello; M., Tarallo; S., Tissot; A., Toncelli; M., Tonelli; O., Torre; E., Tournefier; F., Travasso; C., Tremola; E., Turri; G., Vajente; J. F. J., van den Brand; C., Van Den Broeck; S., van der Putten; M., Vasuth; M., Vavoulidis; G., Vedovato; D., Verkindt; Vetrano, Flavio; O., Véziant; Vicere', Andrea; J. Y., Vinet; S., Vilalte; S., Vitale; H., Vocca; R. L., Ward; M., Was; K., Yamamoto; M., Yvert; J. P., Zendri; Z., Zhan

    Virgo: a laser interferometer to detect gravitational waves

    No full text
    This paper presents a complete description of Virgo, the French-Italian gravitational wave detector. The detector, built at Cascina, near Pisa (Italy), is a very large Michelson interferometer, with 3 km-long arms. In this paper, following a presentation of the physics requirements, leading to the specifications for the construction of the detector, a detailed description of all its different elements is given. These include civil engineering infrastructures, a huge ultra-high vacuum (UHV) chamber (about 6000 cubic metres), all of the optical components, including high quality mirrors and their seismic isolating suspensions, all of the electronics required to control the interferometer and for signal detection. The expected performances of these different elements are given, leading to an overall sensitivity curve as a function of the incoming gravitational wave frequency. This description represents the detector as built and used in the first data-taking runs. Improvements in different parts have been and continue to be performed, leading to better sensitivities. These will be detailed in a forthcoming paper

    Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo

    Get PDF
    Advanced LIGO and Advanced Virgo are monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded by these instruments during their first and second observing runs. The main data products are gravitational-wave strain time series sampled at 16384 Hz. The datasets that include this strain measurement can be freely accessed through the Gravitational Wave Open Science Center at http://gw-openscience.org, together with data-quality information essential for the analysis of LIGO and Virgo data, documentation, tutorials, and supporting software
    corecore