60 research outputs found

    When Eye-Tracking Meets Cognitive Modeling: Applications to Cyber Security Systems

    Get PDF
    Human cognitive modeling techniques and related software tools have been widely used by researchers and practitioners to evaluate the effectiveness of user interface (UI) designs and related human performance. However, they are rarely used in the cyber security field despite the fact that human factors have been recognized as a key element for cyber security systems. For a cyber security system involving a relatively complicated UI, it could be difficult to build a cognitive model that accurately captures the different cognitive tasks involved in all user interactions. Using a moderately complicated user authentication system as an example system and CogTool as a typical cognitive modeling tool, this paper aims to provide insights into the use of eye-tracking data for facilitating human cognitive modeling of cognitive tasks more effectively and accurately. We used visual scan paths extracted from an eye-tracking user study to facilitate the design of cognitive modeling tasks. This allowed us to reproduce some insecure human behavioral patterns observed in some previous lab-based user studies on the same system, and more importantly, we also found some unexpected new results about human behavior. The comparison between human cognitive models with and without eye-tracking data suggests that eye-tracking data can provide useful information to facilitate the process of human cognitive modeling as well as to achieve a better understanding of security-related human behaviors. In addition, our results demonstrated that cyber security research can benefit from a combination of eye-tracking and cognitive modeling to study human behavior related security problems

    Klf15 Is Critical for the Development and Differentiation of Drosophila Nephrocytes

    Get PDF
    Insect nephrocytes are highly endocytic scavenger cells that represent the only invertebrate model for the study of human kidney podocytes. Despite their importance, nephrocyte development is largely uncharacterised. This work tested whether the insect ortholog of mammalian Kidney Krüppel-Like Factor (Klf15), a transcription factor required for mammalian podocyte differentiation, was required for insect nephrocyte development. It was found that expression of Drosophila Klf15 (dKlf15, previously known as Bteb2) was restricted to the only two nephrocyte populations in Drosophila, the garland cells and pericardial nephrocytes. Loss of dKlf15 function led to attrition of both nephrocyte populations and sensitised larvae to the xenotoxin silver nitrate. Although pericardial nephrocytes in dKlf15 loss of function mutants were specified during embryogenesis, they failed to express the slit diaphragm gene sticks and stones and did not form slit diaphragms. Conditional silencing of dKlf15 in adults led to reduced surface expression of the endocytic receptor Amnionless and loss of in vivo scavenger function. Over-expression of dKlf15 increased nephrocyte numbers and rescued age-dependent decline in nephrocyte function. The data place dKlf15 upstream of sns and Amnionless in a nephrocyte-restricted differentiation pathway and suggest dKlf15 expression is both necessary and sufficient to sustain nephrocyte differentiation. These findings explain the physiological relevance of dKlf15 in Drosophila and imply that the role of KLF15 in human podocytes is evolutionarily conserve

    Leveraging Rural Energy Investment for Parasitic Disease Control: Schistosome Ova Inactivation and Energy Co-Benefits of Anaerobic Digesters in Rural China

    Get PDF
    Cooking and heating remain the most energy intensive activities among the world's poor, and thus improved access to clean energies for these tasks has been highlighted as a key requirement of attaining the major objectives of the UN Millennium Development Goals. A move towards clean energy technologies such as biogas systems (which produce methane from human and animal waste) has the potential to provide immediate benefits for the control of neglected tropical diseases. Here, an assessment of the parasitic disease and energy benefits of biogas systems in Sichuan Province, China, is presented, highlighting how the public health sector can leverage the proliferation of rural energy projects for infectious disease control. ova) counted at the influent of two biogas systems were removed in the systems when adjusted for system residence time, an approximate 1-log removal attributable to sedimentation. Combined, these inactivation/removal processes underscore the promise of biogas infrastructure for reducing parasite contamination resulting from nightsoil use. When interviewed an average of 4 years after construction, villagers attributed large changes in fuel usage to the installation of biogas systems. Household coal usage decreased by 68%, wood by 74%, and crop waste by 6%. With reported energy savings valued at roughly 600 CNY per year, 2–3 years were required to recoup the capital costs of biogas systems. In villages without subsidies, no new biogas systems were implemented.Sustainable strategies that integrate rural energy needs and sanitation offer tremendous promise for long-term control of parasitic diseases, while simultaneously reducing energy costs and improving quality of life. Government policies can enhance the financial viability of such strategies by introducing fiscal incentives for joint sanitation/sustainable energy projects, along with their associated public outreach and education programs

    Environmental enrichment requires adult neurogenesis to facilitate the recovery from psychosocial stress

    Get PDF
    The subgranular zone of the adult hippocampal dentate gyrus contains a pool of neural stem cells that continuously divide and differentiate into functional granule cells. It has been shown that production of new hippocampal neurons is necessary for amelioration of stress-induced behavioral changes by antidepressants in animal models of depression. The survival of newly born hippocampal neurons is decreased by chronic psychosocial stress and increased by exposure to enriched environments. These observations suggest the existence of a link between hippocampal neurogenesis, stress-induced behavioral changes, and the beneficial effects of enriched environment. To show causality, we subjected transgenic mice with conditionally suppressed neurogenesis to psychosocial stress followed by environmental enrichment. First, we showed that repeated social defeat coupled with chronic exposure to an aggressor produces robust and quantifiable indices of submissive and depressive-like behaviors; second, subsequent exposure to an enriched environment led to extinction of the submissive phenotype, while animals exposed to an impoverished environment retained the submissive phenotype; and third, enrichment was not effective in reversing the submissive and depressive-like behaviors in transgenic mice lacking neurogenesis. Our data show two main findings. First, living in an enriched environment is highly effective in extinguishing submissive behavioral traits developed during chronic social stress, and second, these effects are critically dependent on adult neurogenesis, indicating that beneficial behavioral adaptations are dependent on intact adult neurogenesis

    Glucocorticoids promote structural and functional maturation of foetal cardiomyocytes: a role for PGC-1α

    Get PDF
    Glucocorticoid levels rise dramatically in late gestation to mature foetal organs in readiness for postnatal life. Immature heart function may compromise survival. Cardiomyocyte glucocorticoid receptor (GR) is required for the structural and functional maturation of the foetal heart in vivo, yet the molecular mechanisms are largely unknown. Here we asked if GR activation in foetal cardiomyocytes in vitro elicits similar maturational changes. We show that physiologically relevant glucocorticoid levels improve contractility of primary-mouse-foetal cardiomyocytes, promote Z-disc assembly and the appearance of mature myofibrils, and increase mitochondrial activity. Genes induced in vitro mimic those induced in vivo and include PGC-1α, a critical regulator of cardiac mitochondrial capacity. SiRNA-mediated abrogation of the glucocorticoid induction of PGC-1α in vitro abolished the effect of glucocorticoid on myofibril structure and mitochondrial oxygen consumption. Using RNA sequencing we identified a number of transcriptional regulators, including PGC-1α, induced as primary targets of GR in foetal cardiomyocytes. These data demonstrate that PGC-1α is a key mediator of glucocorticoid-induced maturation of foetal cardiomyocyte structure and identify other candidate transcriptional regulators that may play critical roles in the transition of the foetal to neonatal heart

    Videogame-based group therapy to improve self-awareness and social skills after traumatic brain injury

    Get PDF
    [EN] Background: This study determines the feasibility of different approaches to integrative videogame-based group therapy for improving self-awareness, social skills, and behaviors among traumatic brain injury (TBI) victims and retrieves participant feedback. Methods: Forty-two adult TBI survivors were included in a longitudinal study with a pre- and post-assessments. The experimental intervention involved weekly one-hour sessions conducted over six months. Participants were assessed using the Self-Awareness Deficits Interview (SADI), Patient Competency Rating Scale (PCRS), the Social Skills Scale (SSS), the Frontal Systems Behavior Scale (FrSBe), the System Usability Scale (SUS). Pearson's chi-squared test (χ 2 ) was applied to determine the percentage of participants who had changed their clinical classification in these tests. Feedback of the intervention was collected through the Intrinsic Motivation Inventory (IMI). Results: SADI results showed an improvement in participant perceptions of deficits (χ 2 = 5.25, p < 0.05), of their implications (χ 2 = 4.71, p < 0.05), and of long-term planning (χ 2 = 7.86, p < 0.01). PCRS results confirm these findings (χ 2 = 5.79, p < 0.05). SSS results were also positive with respect to social skills outcomes (χ 2 = 17.52, p < 0.01), and FrSBe results showed behavioral improvements (χ 2 = 34.12, p < 0.01). Participants deemed the system accessible (80.43 ± 8.01 out of 100) and regarded the intervention as interesting and useful (5.74 ± 0.69 out of 7). Conclusions: Integrative videogame-based group therapy can improve self-awareness, social skills, and behaviors among individuals with chronic TBI, and the approach is considered effective and motivating.This study was funded in part by Ministerio de Economia y Competitividad of Spain (Project TEREHA, IDI-20110844; and NeuroVR, TIN2013-44741-R), by Ministerio de Educacion y Ciencia of Spain (Projects Consolider-C, SEJ2006-14301/PSIC; and "CIBER of Physiopathology of Obesity and Nutrition, an initiative of ISCIII"), and by the Excellence Research Program PROMETEO (Generalitat Valenciana. Conselleria de Educacion, 2008-157).Llorens Rodríguez, R.; Noé Sebastián, E.; Ferri, J.; Alcañiz Raya, ML. (2015). Videogame-based group therapy to improve self-awareness and social skills after traumatic brain injury. Journal of NeuroEngineering and Rehabilitation. 12(37):1-9. https://doi.org/10.1186/s12984-015-0029-1S191237Sherer M, Bergloff P, Levin E, High Jr WM, Oden KE, Nick TG. Impaired awareness and employment outcome after traumatic brain injury. J Head Trauma Rehabil. 1998;13(5):52–61.Sherer M, Hart T, Nick TG. Measurement of impaired self-awareness after traumatic brain injury: a comparison of the patient competency rating scale and the awareness questionnaire. Brain Inj. 2003;17(1):25–37.Simmond M, Fleming J. Occupational therapy assessment of self-awareness following traumatic brain injury: a literature review. Br J Occup Ther. 2003;66:447–53.Bogod NM, Mateer CA, MacDonald SWS. Self-awareness after traumatic brain injury: a comparison of measures and their relationship to executive functions. J Int Neuropsychol Soc. 2003;9(03):450–8.Stuss DT, Levine B. Adult clinical neuropsychology: lessons from studies of the frontal lobes. Annu Rev Psychol. 2002;53:401–33.Ham TE, Bonnelle V, Hellyer P, Jilka S, Robertson IH, Leech R, et al. The neural basis of impaired self-awareness after traumatic brain injury. Brain. 2014;137(Pt 2):586–97.Prigatano GP, Schacter DL. Awareness of Deficit After Brain Injury: Clinical and Theoretical Issues. New York: Oxford University Press; 1991.Katz N, Fleming J, Keren N, Lightbody S, Hartman-Maeir A. Unawareness and/or denial of disability: implications for occupational therapy intervention. Can J Occup Ther. 2002;69(5):281–92.Fleming JM, Strong J, Ashton R. Self-awareness of deficits in adults with traumatic brain injury: how best to measure? Brain Inj. 1996;10(1):1–15.Goverover Y, Johnston MV, Toglia J, Deluca J. Treatment to improve self-awareness in persons with acquired brain injury. Brain Inj. 2007;21(9):913–23.Bach LJ, David AS. Self-awareness after acquired and traumatic brain injury. Neuropsychol Rehabil. 2006;16(4):397–414.Prigatano GP. Behavioral Limitations TBI patients tend to underestimate: a replication and extension to patients with lateralized cerebral dysfunction. Clin Neuropsychol. 1996;10(2):191–201.Sherer M, Boake C, Levin E, Silver BV, Ringholz G, High WM. Characteristics of impaired awareness after traumatic brain injury. J Int Neuropsychol Soc. 1998;4(04):380–7.Sveen U, Mongs M, Roe C, Sandvik L, Bautz-Holter E. Self-rated competency in activities predicts functioning and participation one year after traumatic brain injury. Clin Rehabil. 2008;22(1):45–55.Crosson B, Barco PP, Velozo CA, Bolesta MM, Cooper PV, Werts D, et al. Awareness and compensation in postacute head injury rehabilitation. J Head Trauma Rehabil. 1989;4(3):46–54.Toglia J, Kirk U. Understanding awareness deficits following brain injury. NeuroRehabilitation. 2000;15(1):57–70.Schrijnemaekers AC, Smeets SM, Ponds RW, van Heugten CM, Rasquin S. Treatment of unawareness of deficits in patients with acquired brain injury: a systematic review. J Head Trauma Rehabil. 2014;29(5):E9–30.Tate R, Kennedy M, Ponsford J, Douglas J, Velikonja D, Bayley M, et al. INCOG recommendations for management of cognition following traumatic brain injury, part III: executive function and self-awareness. J Head Trauma Rehabil. 2014;29(4):338–52.Chittum WR, Johnson K, Chittum JM, Guercio JM, McMorrow MJ. Road to awareness: an individualized training package for increasing knowledge and comprehension of personal deficits in persons with acquired brain injury. Brain Inj. 1996;10(10):763–76.Zhou J, Chittum R, Johnson K, Poppen R, Guercio J, McMorrow MJ. The utilization of a game format to increase knowledge of residuals among people with acquired brain injury. J Head Trauma Rehabil. 1996;11(1):51–61.Ownsworth TL, McFarland K, Mc Young R. Self-awareness and psychosocial functioning following acquired brain injury: an evaluation of a group support programme. Neuropsychol Rehabil. 2000;10(5):465–84.Lundqvist A, Linnros H, Orlenius H, Samuelsson K. Improved self-awareness and coping strategies for patients with acquired brain injury–a group therapy programme. Brain Inj. 2010;24(6):823–32.Schmidt J, Lannin N, Fleming J, Ownsworth T. Feedback interventions for impaired self-awareness following brain injury: a systematic review. J Rehabil Med. 2011;43(8):673–80.Schmidt J, Fleming J, Ownsworth T, Lannin NA. Video feedback on functional task performance improves self-awareness after traumatic brain injury: a randomized controlled trial. Neurorehabil Neural Repair. 2013;27(4):316–24.McGraw-Hunter M, Faw GD, Davis PK. The use of video self-modelling and feedback to teach cooking skills to individuals with traumatic brain injury: a pilot study. Brain Inj. 2006;20(10):1061–8.Ownsworth T, Quinn H, Fleming J, Kendall M, Shum D. Error self-regulation following traumatic brain injury: a single case study evaluation of metacognitive skills training and behavioural practice interventions. Neuropsychol Rehabil. 2010;20(1):59–80.Lucas SE, Fleming JM. Interventions for improving self-awareness following acquired brain injury. Aust Occup Ther J. 2005;52(2):160–70.Malec JF, Brown AW, Leibson CL, Flaada JT, Mandrekar JN, Diehl NN, et al. The mayo classification system for traumatic brain injury severity. J Neurotrauma. 2007;24(9):1417–24.Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.Nakase-Thompson R, Manning E, Sherer M, Yablon SA, Gontkovsky SL, Vickery C. Brief assessment of severe language impairments: initial validation of the Mississippi aphasia screening test. Brain Inj. 2005;19(9):685–91.Prigatano GP, Fordyce DJ. Neuropsychological rehabilitation after brain injury. Baltimore: The Johns Hopkins University Press; 1986.Gismero E. EHS, Escala de habilidades sociales. TEA: Madrid; 2000.Reid-Arndt SA, Nehl C, Hinkebein J. The Frontal Systems Behaviour Scale (FrSBe) as a predictor of community integration following a traumatic brain injury. Brain Inj. 2007;21(13–14):1361–9.Brooke J. SUS: A quick and dirty usability scale. In Usability evaluation in industry. PW Jordan, et al. Editors. Taylor and Francis; 1996Plant RW, Ryan RM. Intrinsic motivation and the effects of self-consciousness, self-awareness, and ego-involvement: An investigation of internally controlling styles. J Pers. 1985;53(3):435–49.Cheng SK, Man DW. Management of impaired self-awareness in persons with traumatic brain injury. Brain Inj. 2006;20(6):621–8.Ownsworth T, Fleming J, Shum D, Kuipers P, Strong J. Comparison of individual, group and combined intervention formats in a randomized controlled trial for facilitating goal attainment and improving psychosocial function following acquired brain injury. J Rehabil Med. 2008;40(2):81–8.Ownsworth T, Fleming J, Desbois J, Strong J, Kuipers P. A metacognitive contextual intervention to enhance error awareness and functional outcome following traumatic brain injury: a single-case experimental design. J Int Neuropsychol Soc. 2006;12(1):54–63.Fleming JM, Lucas SE, Lightbody S. Using occupation to facilitate self-awareness in people who have acquired brain injury: a pilot study. Can J Occup Ther. 2006;73(1):44–55.McDonald S, Tate R, Togher L, Bornhofen C, Long E, Gertler P, et al. Social skills treatment for people with severe, chronic acquired brain injuries: a multicenter trial. Arch Phys Med Rehabil. 2008;89(9):1648–59.Schefft BK, Malec JF, Lehr BK, Kanfer FH. The role of self-regulation therapy with the brain-injured client. In: Maurish ME, Moses JA, editors. Clinical neuropsychology: theoretical foundations for practitioners. Mahwah, NJ: Erlbaum; 1997. p. 237–82.Pollens RD, McBratnie BP, Burton PL. Beyond cognition: executive functions in closed head injury. Cogn Rehabil. 1988;6(5):26–32.Carbery H, Burd B. Social aspects of cognitive retraining in an outpatient group setting for head trauma patients. Cogn Rehabil. 1983;1:5–7.Bennett TL, Raymond MJ. Emotional consequences and psychotherapy for individuals with mild brain injury. Appl Neuropsychol. 1997;4(1):55–61.Delmonico RL, Hanley-Peterson P, Englander J. Group psychotherapy for persons with traumatic brain injury: management of frustration and substance abuse. J Head Trauma Rehabil. 1998;13(6):10–22.Alexy WD, Foster M, Baker A. Audio-visual feedback: an exercise in self-awareness for the head injured patient. Cogn Rehabil. 1983;1(6):8–10.Ranseen JD, Bohaska LA, Schmitt FA. An investigation of anosognosia following traumatic head injury. Int J Clin Neuropsychol. 1990;12(1):29–36.Sasse N, Gibbons H, Wilson L, Martinez-Olivera R, Schmidt H, Hasselhorn M, et al. Self-awareness and health-related quality of life after traumatic brain injury. J Head Trauma Rehabil. 2013;28(6):464–72.Malec JF, Testa JA, Rush BK, Brown AW, Moessner AM. Self-assessment of impairment, impaired self-awareness, and depression after traumatic brain injury. J Head Trauma Rehabil. 2007;22(3):156–66.Fleming JM, Ownsworth T. A review of awareness interventions in brain injury rehabilitation. Neuropsychol Rehabil. 2006;16(4):474–500

    When simulated environments make the difference: the effectiveness of different types of training of car service procedures

    Get PDF
    An empirical analysis was performed to compare the effectiveness of different approaches to training a set of procedural skills to a sample of novice trainees. Sixty-five participants were randomly assigned to one of the following three training groups: (1) learning-by-doing in a 3D desktop virtual environment, (2) learning-by-observing a video (show-and-tell) explanation of the procedures, and (3) trial-and-error. In each group, participants were trained on two car service procedures. Participants were recalled to perform a procedure either 2 or 4 weeks after the training. The results showed that: (1) participants trained through the virtual approach of learning-by-doing performed both procedures significantly better (i.e. p < .05 in terms of errors and time) than people of non-virtual groups, (2) the virtual training group, after a period of non-use, were more effective than non-virtual training (i.e. p < .05) in their ability to recover their skills, (3) after a (simulated) long period from the training—i.e. up to 12 weeks—people who experienced 3D environments consistently performed better than people who received other kinds of training. The results also suggested that independently from the training group, trainees’ visuospatial abilities were a predictor of performance, at least for the complex service procedure, adj R2 = .460, and that post-training performances of people trained through virtual learning-by-doing are not affected by learning styles. Finally, a strong relationship (p < .001, R2 = .441) was identified between usability and trust in the use of the virtual training tool—i.e. the more the system was perceived as usable, the more it was perceived as trustable to acquire the competences
    corecore