17,387 research outputs found
Development of a variational SEASAT data analysis technique
Oceans are data-sparse areas in terms of conventional weather observations. The surface pressure field obtained solely by analyzing the conventional weather data is not expected to possess high accuracy. On the other hand, in entering asynoptic data such as satellite-derived temperature soundings into an atmospheric prediction system, an improved surface analysis is crucial for obtaining more accurate weather predictions because the mass distribution of the entire atmosphere will be better represented in the system as a result of the more accurate surface pressure field. In order to obtain improved surface pressure analyses over the oceans, a variational adjustment technique was developed to help blend the densely distributed surface wind data derived from the SEASAT-A radar observations into the sparsely distributed conventional pressure data. A simple marine boundary layer scheme employed in the adjustment technique was discussed. In addition, a few aspects of the current technique were determined by numerical experiments
Magnetism as a mass term of the edge states in graphene
The magnetism by the edge states in graphene is investigated theoretically.
An instability of the pseudo-spin order of the edge states induces
ferrimagnetic order in the presence of the Coulomb interaction. Although the
next nearest-neighbor hopping can stabilize the pseudo-spin order, a strong
Coulomb interaction makes the pseudo-spin unpolarized and real spin polarized.
The magnetism of the edge states makes two peaks of the density of states in
the conduction and valence energy bands near the Fermi point. Using a
continuous model of the Weyl equation, we show that the edge-induced gauge
field and the spin dependent mass terms are keys to make the magnetism of the
edge states. A relationship between the magnetism of the edge states and the
parity anomaly is discussed.Comment: 7 pages, 5 figure
Gauge field for edge state in graphene
By considering the continuous model for graphene, we analytically study a
special gauge field for the edge state. The gauge field explains the properties
of the edge state such as the existence only on the zigzag edge, the partial
appearance in the -space, and the energy position around the Fermi energy.
It is demonstrated utilizing the gauge field that the edge state is robust for
surface reconstruction, and the next nearest-neighbor interaction which breaks
the particle-hole symmetry stabilizes the edge state.Comment: 9 pages, 5 figure
Dropping rho and A_1 Meson Masses at Chiral Phase Transition in the Generalized Hidden Local Symmetry
We study the chiral symmetry restoration using the generalized hidden local
symmetry (GHLS) which incorporates the rho and A_1 mesons as the gauge bosons
of the GHLS and the pion as the Nambu-Goldstone boson consistently with the
chiral symmetry of QCD. We show that a set of parameter relations, which
ensures the first and second Weinberg's sum rules, is invariant under the
renormalization group evolution. Then, we found that the Weinberg's sum rules
together with the matching of the vector and axial-vector current correlators
inevitably leads to {\it the dropping masses of both rho and A_1 mesons} at the
symmetry restoration point, and that the mass ratio as well as the mixing angle
between the pion and A_1 meson flows into one of three fixed points.Comment: 17 pages, 7 figures; references added and discussions expande
Gravitational Radiation from Plunging Orbits - Perturbative Study -
Numerical relativity has recently yielded a plethora of results about kicks
from spinning mergers which has, in turn, vastly increased our knowledge about
the spin interactions of black hole systems. In this work we use black hole
perturbation theory to calculate accurately the gravitational waves emanating
from the end of the plunging stage of an extreme mass ratio merger in order to
further understand this phenomenon. This study focuses primarily on spin
induced effects with emphasis on the maximally spinning limit and the
identification of possible causes of generic behavior.
We find that gravitational waves emitted during the plunging phase exhibit
damped oscillatory behavior, corresponding to a coherent excitation of
quasi-normal modes by the test particle. This feature is universal in the sense
that the frequencies and damping time do not depend on the orbital parameters
of the plunging particle. Furthermore, the observed frequencies are distinct
from those associated with the usual free quasi-normal ringing. Our calculation
suggests that a maximum in radiated energy and momentum occurs at spin
parameters equal to and , respectively for the plunge
stage of a polar orbit. The dependence of linear momentum emission on the angle
at which a polar orbit impacts the horizon is quantified. One of the advantages
of the perturbation approach adopted here is that insight into the actual
mechanism of radiation emission and its relationship to black hole ringing is
obtained by carefully identifying the dominant terms in the expansions used
Theory of superconductivity of carbon nanotubes and graphene
We present a new mechanism of carbon nanotube superconductivity that
originates from edge states which are specific to graphene. Using on-site and
boundary deformation potentials which do not cause bulk superconductivity, we
obtain an appreciable transition temperature for the edge state. As a
consequence, a metallic zigzag carbon nanotube having open boundaries can be
regarded as a natural superconductor/normal metal/superconductor junction
system, in which superconducting states are developed locally at both ends of
the nanotube and a normal metal exists in the middle. In this case, a signal of
the edge state superconductivity appears as the Josephson current which is
sensitive to the length of a nanotube and the position of the Fermi energy.
Such a dependence distinguishs edge state superconductivity from bulk
superconductivity.Comment: 5 pages, 2 figure
Fourth Order Perturbation Theory for Normal Selfenergy in Repulsive Hubbard Model
We investigate the normal selfenergy and the mass enhancement factor in the
Hubbard model on the two-dimensional square lattice. Our purpose in this paper
is to evaluate the mass enhancement factor more quantitatively than the
conventional third order perturbation theory. We calculate it by expanding
perturbatively up to the fourth order with respect to the on-site repulsion
. We consider the cases that the system is near the half-filling, which are
similar situations to high- cuprates. As results of the calculations, we
obtain the large mass enhancement on the Fermi surface by introducing the
fourth order terms. This is mainly originated from the fourth order
particle-hole and particle-particle diagrams. Although the other fourth order
terms have effect of reducing the effective mass, this effect does not cancel
out the former mass enhancement completely and there remains still a large mass
enhancement effect. In addition, we find that the mass enhancement factor
becomes large with increasing the on-site repulsion and the density of
state (DOS) at the Fermi energy . According to many current reseaches,
such large and enhance the effective interaction between
quasiparticles, therefore the superconducting transition temperature
increases. On the other hand, the large mass enhancement leads the reduction of
the energy scale of quasiparticles, as a result, is reduced. When we
discuss , we have to estimate these two competitive effects.Comment: 6pages,8figure
Complementary Constraints on Brane Cosmology
The acceleration of the expansion of the universe represents one of the major
challenges to our current understanding of fundamental physics. In principle,
to explain this phenomenon, at least two different routes may be followed:
either adjusting the energy content of the Universe -- by introducing a
negative-pressure dark energy -- or modifying gravity at very large scales --
by introducing new spatial dimensions, an idea also required by unification
theories. In the cosmological context, the role of such extra dimensions as the
source of the dark pressure responsable for the acceleration of our Universe is
translated into the so-called brane world (BW) cosmologies. Here we study
complementary constraints on a particular class of BW scenarios in which the
modification of gravity arises due to a gravitational \emph{leakage} into extra
dimensions. To this end, we use the most recent Chandra measurements of the
X-ray gas mass fraction in galaxy clusters, the WMAP determinations of the
baryon density parameter, measurements of the Hubble parameter from the
\emph{HST}, and the current supernova data. In agreement with other recent
results, it is shown that these models provide a good description for these
complementary data, although a closed scenario is always favored in the joint
analysis. We emphasize that observational tests of BW scenarios constitute a
natural verification of the role of possible extra dimensions in both
fundamental physics and cosmology.Comment: 6 Pages, 4 Figures, LaTe
Ultrafast Spin Dynamics in GaAs/GaSb/InAs Heterostructures Probed by Second Harmonic Generation
We report the first application of pump-probe second harmonic generation
(SHG) measurements to characterize optically-induced magnetization in
non-magnetic multilayer semiconductors. In the experiment, coherent spins are
selectively excited by a pump beam in the GaAs layer of GaAs/GaSb/InAs
structures. However, the resulting net magnetization manifests itself through
the induced SHG probe signal from the GaSb/InAs interface, thus indicating a
coherent spin transport across the heterostructure. We find that the
magnetization dynamics is governed by an interplay between the spin density
evolution at the interfaces and the spin dephasing.Comment: 4 pages + 4 Fig
- …